

CERAMIC INSERTS FOR HIGH-SPEED & HIGH FEED MACHINING

NEW CERAMIC INSERT LINES FOR HIGH-SPEED & HIGH FEED MACHINING

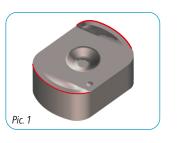
- For difficult-to-cut materials •
- Large corner radius insert for high feed machining
 - Increased tool life •
 - Strong clamping and good chip evacuation •

CERASFEED CERAMIC INSERTS & HOLDERS

Product Overview

New ceramic milling line designed for high productivity through high-feed, high-speed machining of difficult-to-cut materials (HRSA), especially nickel-based alloys such as Inconel.

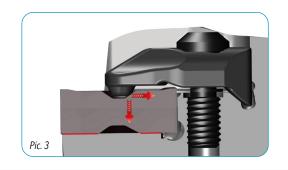
With the growing demand of both the aerospace and power generation industries, the nature of the related industries' components from difficult-to-cut materials – where materials maintain strength even in high temperatures – also grows. These materials have very low heat conductivity and are extremely difficult to machine, making it difficult to improve productivity. To meet these market demands, Ingersoll has launched a new ceramic milling line of inserts and cutters – **CeraSFeed**.


Application Range

Based on a unique combination of a ceramic grade suitable for high-speed machining and a unique and large radius shape for high feed machining, the **CeraSFeed** line is a high productivity solution for the machining of difficult-to-cut materials, especially Inconel

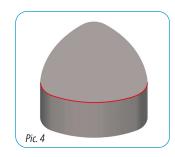
The ceramic inserts come in two sizes: 09 mm and 12 mm. Cutters come in both end mill and face mill types. They are dedicated to a variety of applications including facing, shouldering, slotting, straight ramping and helical ramping. The ceramic grade IN76N is also suitable to machine regular cast-iron materials, such as GG and GGG.

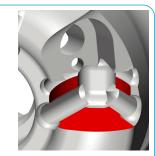
Technical Features & Advantages of LNXF09


- Double-sided four corner dimple type insert (Pic. 1)
- Unique insert geometry for high feed applications with positive cutting edges
- Large corner radius for increased tool life
- More rigid design with stable machining compared to the existing RPGN inserts (Pic.2)
- Positive rake angle and good chip evacuation
- Strong clamping by dimple type insert and clamp (*Pic.3*)

Pic. 2 RPGN

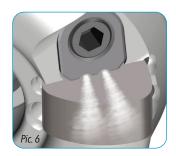
LNXF




CERA

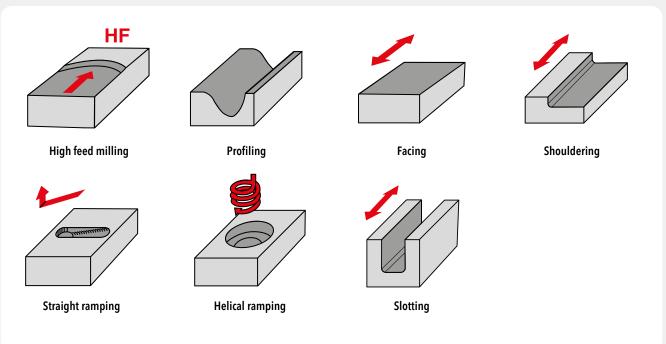
Technical Features & Advantages of TNXN12

- Strong double-sided six corner insert (Pic.4)
- Large corner radius insert for high feed machining - Replaces ISO RNGN 12 insert
 - Increased tool life
- Three-sided contact for stable clamping (Pic.5)
- Direct air cooling through the wedge clamp (Pic.6)



ISO RNGN

TNXN 12



A Wide Variety of Applications

Applied Parts

ADAPTION ACC. TO DIN 1835 A										5				
	0	O	Inge	rsoll				AD1			LT			
Designation	D	D1	d	LT	L1	а	Rp	Z	Ğ				ĸ	kg
1ZG3F025040T4R00	14,8	25	25	100	40	1,5	3,4	3	1				1	0,32
1ZG3F032040U7R00	21,5	32	32	120	40	1,5	3,4	3	0,6				1	0,63
1ZG3F040040U7R00	29,4	40	32	120	40	1,5	3,4	4	0,5				1	0,69
Rp = programming radius	;													
LNXF0905R01	9		5											
Designation fz(min/max) Des	ign					Grade	IN76N						
LNXF0905R01 0,1	5/0,35 neut	tral geome	etry SiN											
										• = P) = M	= K O =	N = S	O = H

SPARE PARTS		2	
	CCL-3S ASSY	L-W 2	
			(1) = Clamp set (2) = Wrench

ADAPTION ACC. TO DIN	8030							\langle	5						
		Ingerso									-			5) # #	
Designation		D1		d1	LT				Ś					(K)	H kg
DG1H050R00	32,8	50	22	45	40	2,5	4,5	5	0,5					1	0,30
DG1H063R00	45,7	63	22	47	40	2,5	4,5	7	0,4					\checkmark	0,40
DG1H080R00	62,6	80	27	70	50	2,5	4,5	8	0,3					\checkmark	1,20
Rp = programming radi	us														
TNXN1207N0104	Ø12 5°E		I									I			
Designation f	z(min/max) Des	ign					Grade	IN76N							
TNXN1207N0104),15/0,35 neut	tral geom	etry SiN												
										• = P	<mark>)</mark> = M	=	K 🔍 = N	O = S	O = H

SPARE PARTS		2	³	
	WFZ 6-C	WS 6	T-W 3	
				(1) = Wedge (2) = Clamp screw (3) = Screw driver

CERASFEED CUTTING AND RAMPING DATA

LNFX0905R01

Insert:	LNXF0905R01
Recomm. cutting depth:	ap = 1,0 mm
max. cutting depth:	ap = 1,5 mm

Recommended cutting data

			food portoath			
ISO	material	1st choice d resp. wear res	ry machining sistant carbide	1st choice w resp. roug	feed per tooth fz [mm]	
	unalloyed steel	-	-	-	-	-
Р	alloyed steel 800 N/mm ²	-	-	-	-	-
	alloyed steel 1100 N/mm ²	-	-	-	-	-
Μ	stainless steel	-	-	-	-	-
к	gray cast iron	IN76N	400 - 800	-	-	0,15 - 0,30
ĸ	nodular cast iron	IN76N	400 - 800	-	-	0,15 - 0,30
N	aluminum	-	-	-	-	-
c	high temperature alloys titanium alloys	IN76N	400 - 800	-	-	0,10 - 0,20
2	titanium alloys	-	-	-	-	-
Н	hard machining < 54 HRC hard machining < 63 HRC	-	-	-	-	-
H	hard machining < 63 HRC	-	-	-	-	-
	•					

Tips:

- The worse the material machinability, the smaller the tool engagement should be choosen.
- The smaller the cutting tool diameter, the higher the cutting speed can be.
- Approach feed should be reduced by 30%.
- 4-edged insert
- Programming radius R3,4

Ramping data and circular interpolation:

tool diameter [mm]	max. ramp. angle [°]	min. bore dia.[mm]	max. ap/rev. [mm]	max. bore dia. [mm]
25	1	39	1	50
32	0,6	53	0,7	64
40	0,5	69	0,7	80

CERASFEED CUTTING AND RAMPING DATA

TNXN1207N0104

Insert:	TNXN1207N0104
Recomm. cutting depth:	ap = 1,5 mm
max. cutting depth:	ap = 2,5 mm

Recommended cutting data

			food nontroll			
ISO	material	1st choice dı resp. wear res	ry machining istant carbide	1st choice we resp. roug	feed per tooth fz [mm]	
	unalloyed steel	-	-	-	-	-
Р	alloyed steel 800 N/mm ²	-	-	-	-	-
	alloyed steel 1100 N/mm ²	-	-	-	-	-
Μ	stainless steel	-	-	-	-	-
v	gray cast iron	IN76N	400 - 800	-	-	0,20 - 0,40
ĸ	nodular cast iron	IN76N	400 - 800	-	-	0,20 - 0,40
	aluminum	-	-	-	-	-
c	high temperature alloys	IN76N	400 - 800	-	-	0,15 - 0,30
2	titanium alloys	-	-	-	-	-
Н	hard machining < 54 HRC	-	-	-	-	-
п	hard machining < 63 HRC	-	-	-	-	-

Tips:

- The worse the material machinability, the smaller the tool engagement should be choosen.
- The smaller the cutting tool diameter, the higher the cutting speed can be.
- Approach feed should be reduced by 30%.
- 6-edged insert
- Programming radius R3,4

Ramping data and circular interpolation:

tool diameter [mm]	max. ramp. angle [°]	min. bore dia.[mm]	max. ap/rev. [mm]	max. bore dia. [mm]
50	0,5	84	1,1	100
63	0,4	110	1,1	126
80	0,3	144	1,1	160

Ingersoll Werkzeuge GmbH Main Office:

Kalteiche-Ring 21–25 • D-35708 Haiger, Germany Tel.: +49 (0)2773-742-0 • info@ingersoll-imc.de

Office South: Florianstraße 13-17 • D-71665 Vaihingen-Horrheim Tel.: +49 (0)7042-8316-0 • horrheim@ingersoll-imc.de

Office Wulften: Steinstraße 11 · D-37199 Wulften Tel.: +49 (0)556-99 55 98-0 · wulften@ingersoll-imc.de