T-SLOT MILL 16T1A

- 4-edged tangential insert
- Positive and negative geometry
- Square borehole for stable positioning
- Internal coolant supply
- No roof shape / 90° geometry
- Optimal tool life
- High process reliability
Product Overview

The new T-slot mills of series 16T1A combine stability and process-reliability of a tangential system with the option of smooth cut due to the double-positive (radial and axial) geometry.

The cutter series covers the T-slot sizes T22, T28 and T36 according to DIN 650 in the catalog standard. It is possible to cover further T-slot sizes with the existing selection of inserts.

Inserts

The tangential insert provided for this cutter series enables the use of positive and negative geometry in one insert seat. This results in a high degree of flexibility with regard to machining materials as well as process reliability with non-optimal machine stiffness, unfavorable projecting length and clamping situation.

Application Range

The option of using different geometries in one cutter body, in conjunction with the Weldon adaption, allows the use of both mono spindle and multi-spindle units.

Application example of PowerMax T-slot mill:

Ensure good chip flow by means of high coolant or compressed air supply!

Technical Features

- 4-edged (2RH/ 2LH) insert
- Positive and negative geometry can be used in one insert seat.
- No roof shape on the T-slot sides faces of the bottom flange
- Highly economical, flexible and process-reliable

Advantages

The possibility of using positive and negative geometries in one single tool results in a high degree of flexibility in connection with process reliability and economy.
Recommended cutting data:

<table>
<thead>
<tr>
<th>Material</th>
<th>1st choice dry machining</th>
<th>1st choice wet machining</th>
<th>Chip Thickness hm [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vc [m/min]</td>
<td>Vc [m/min]</td>
<td></td>
</tr>
<tr>
<td>unalloyed steel</td>
<td>IN4005 140 - 200</td>
<td>IN4030 120 - 180</td>
<td>hm x 1.2</td>
</tr>
<tr>
<td>alloyed steel 800 N/mm²</td>
<td>IN4005 120 - 160</td>
<td>IN4030 100 - 140</td>
<td>hm x 1.0</td>
</tr>
<tr>
<td>alloyed steel 1100 N/mm²</td>
<td>IN4005 100 - 160</td>
<td>IN4030 100 - 140</td>
<td>hm x 0.9</td>
</tr>
<tr>
<td>stainless steel</td>
<td>IN4005 80 - 160</td>
<td>IN4030 80 - 140</td>
<td>hm x 1.0</td>
</tr>
<tr>
<td>gray cast iron</td>
<td>IN4005 150 - 200</td>
<td>IN4030 130 - 180</td>
<td>hm x 1.2</td>
</tr>
<tr>
<td>nodular cast iron</td>
<td>IN4015 120 - 160</td>
<td>IN4030 100 - 140</td>
<td>hm x 1.0</td>
</tr>
<tr>
<td>aluminum</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>high temperature alloys</td>
<td>IN4005 60 - 100</td>
<td>IN4030 40 - 80</td>
<td>hm x 0.8</td>
</tr>
<tr>
<td>titanium alloys</td>
<td></td>
<td>IN4003 30 - 60</td>
<td>hm x 0.8</td>
</tr>
<tr>
<td>hard machining < 54 HRC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hard machining < 63 HRC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tips:
- The worse the material machinability, the smaller the tool engagement should be chosen.
- The smaller the cutting tool diameter, the higher the cutting speed can be.
- If tool engagement is less than 40% of cutting tool diameter, the feed per tooth should be calculated with the following formula:

\[f_z = \text{hm} \times \sqrt{\frac{D}{3ae}} \]

General information:
- Insert: DPD_-S/DNE_-S
- Average chip thickness: hm = 0.20 mm, hm = 0.25 mm
- Insert screw: SM40-100-R0
- Torque: 4.5 Nm
- Torque wrench: DT40-01 with bit DS-T15B

Successful machining results depend on many factors, so cutting data recommendations can only be a rough guideline. Therefore in any case of doubt do not hesitate to contact your Ingersoll partner.
T-SLOT MILL 16T1A...W

ADAPTION ACC. TO DIN 1835 B

![Diagram of T-SLOT MILL 16T1A...W](image)

<table>
<thead>
<tr>
<th>Designation</th>
<th>D</th>
<th>d</th>
<th>d8</th>
<th>L</th>
<th>L1</th>
<th>L2</th>
<th>a</th>
<th>Z</th>
<th>Zeff</th>
<th>²</th>
<th>related inserts</th>
</tr>
</thead>
<tbody>
<tr>
<td>16T1A040018W5R00</td>
<td>40</td>
<td>25</td>
<td>20</td>
<td>110</td>
<td>48</td>
<td>78</td>
<td>18</td>
<td>4</td>
<td>2</td>
<td>✓</td>
<td>0,373</td>
</tr>
<tr>
<td>16T1A050022W6R00</td>
<td>50</td>
<td>32</td>
<td>26</td>
<td>125</td>
<td>58</td>
<td>89</td>
<td>22</td>
<td>4</td>
<td>2</td>
<td>✓</td>
<td>0,720</td>
</tr>
<tr>
<td>16T1A060028W6R00</td>
<td>60</td>
<td>32</td>
<td>33</td>
<td>140</td>
<td>73</td>
<td>104</td>
<td>28</td>
<td>6</td>
<td>3</td>
<td>✓</td>
<td>1,079</td>
</tr>
</tbody>
</table>

SPARE PARTS

1. SM40-100-RD (4,5Nm) DS-T15S
 - Insert screw
2. SM40-100-RD (4,5Nm) DS-T15S
 - Screw driver
Designation | fz(min/max) | Design | Grades | IN4005 | IN4015 | IN4030
--- | --- | --- | --- | --- | --- | ---
DPD314-201-S | 0.10/0.20 | positive geometry R0.8 | | | | |
DPD314-202-S | 0.10/0.20 | positive geometry R1.6 | | | | |
DPD314-203-S | 0.10/0.20 | positive geometry R2.4 | | | | |
DNE314-201-S | 0.10/0.25 | negative geometry R0.8 | | | | |
DNE314-202-S | 0.10/0.25 | negative geometry R1.6 | | | | |
DNE314-203-S | 0.10/0.25 | negative geometry R2.4 | | | | |
DPD324-201-S | 0.10/0.20 | positive geometry R0.8 | | | | |
DPD324-202-S | 0.10/0.20 | positive geometry R1.6 | | | | |
DNE324-201-S | 0.10/0.25 | negative geometry R0.8 | | | | |
DNE324-202-S | 0.10/0.25 | negative geometry R1.6 | | | | |
DNE324-203-S | 0.10/0.25 | negative geometry R2.4 | | | | |

1) on request