

TECHNICAL GUIDE

MILLING AND DRILLING

Ingersoll's standard program comprises a broad and worldwide established range of cutting tools, suitable for the most various applications.

This range of cutting tools is constantly expanded: End mills, shell end mills, shoulder-type milling cutters, face mills, slotting cutters, form milling cutters, indexable drills, solid carbide, adaptions, set-up equipment and indexable inserts. With a complete line of turning and engraving tools we can now offer our customers a new group of products, thus expanding our capabilities as a broad-range supplier.

The development and production of special-purpose tools according to customer-specific requirements is another important factor for Ingersoll Werkzeuge GmbH. Our know-how and great potential of experience, combined with our own demand for quality, functionality and innovation, guarantees our customers the optimum cutting tool solution – for individual machining tasks, for all industries.

Content

Workpiece material comparison chart	Page	6-11
Surface finish comparison chart	Page	12
Hardness comparison chart	Page	13
Grades - Coatings	Page	14-15
Designation system for ISO indexable inserts	Page	16-17
General formulas	Page	18
Conventional and climb milling / Average chip thickness	Page	19
Correct instalation of the inserts	Page	20
Torque wrench range	Page	21
Chip formation model / Initial contact	Page	22
Consolidated heat value / Heat flow	Page	23
Chips	Page	24
Measures for milling problems	Page	25
Circular interpolation milling / Ramping Capability / High feed milling		26-27
Characteristics of GoldSFeed 13 & 19 mm for 90° shoulder milling	Page	28
Characteristics of GoldQuad ^{XXX} 13 & 19 mm for 90° shoulder milling		29
GoldQuadXXX 30° bevel high feed face mill	.Page	30
Power output calculation / Drive Power	Page	31
Tips	Page	32
Operating instructions	Page	33
Circular thread milling / Finish milling	Page	34
Finish milling	Page	35-36
Operating instructions / Finish milling	Page	37
Finish milling	Page	38
Adjustment instructions finish mill		39-43
Adjustment instructions rough-finishing cutter	Page	44
Adjustment instructions semi-finishing cutter	Page	45
Adjustment instructions shoulder-type milling cutter	Page	46
Adjustment instructions slotting cutter	Page	47-48
Adjustment instructions duo-bore finishing tool	Page	49
Technical features	Page	50-52
Solid carbide cutters	Page	53
ChipSurfer	.Page	54
Installation of the ChipSurfer	Page	55
Technical features conical segment cutter	Page	56-60
Thread milling	Page	62-65
Drilling QuadDrillPlus	Page	66-67
Drilling QuadTwist	Page	68-71
Drilling GoldTwin	.Page	72-73
Drilling SpadeTwist	Page	74
Drilling GoldTwist	Page	75-81
Drilling DeepTwist	.Page	82
Reamer QwikReam	Page	83-85
Deep hole drill DeepTrio	.Page	86
Deep hole drill	Page	87-90

Workpiece material comparison chart

Unalloyed steel 1.0044 \$27 1.0050 £29 1.0060 £33 1.0301 C10 1.0345 P23 1.0401 C15 1.0402 C22 1.0473 P35 1.0501 C35 1.0503 C45 1.0504 C55 1.0503 C45 1.0750 155 1.0726 3555 1.0727 465 Tool steel 12312 1.2342 X37 1.2343 X37 1.2344 X40 1.2343 X37 1.2344 X40 1.2343 X37 1.2344 X40 1.2343 X37 1.2447 S5N 1.2767 45N 1.2767 45N 1.343 H56 Construction, machir 1.6311 20M Case hardened steel	5 5GH 5GH 5GH 5N 5N Mn30 20 20	St 44-2 St 50-2 St 60-2 - St 35.8 - - 19 Mn 6 17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X105CrMoV12 105WCr6 56 NiCrMoV 7 X 45 NiCrMo 4	Q255A; U12552 Q275A; U12752 HRB 335; L33350 DX 1; U59110 Q245R; U50245 15; U20152 - - Q345R; U50345 - - - - Y35; U70352 Y45; U70352 Y45; U70452 Cr2; T30201 - - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202 CrWMn; T20111 -	E250 E350 Fe540 10C4 Fe360H 14C6 20C8 - - 35C8 45C8 - 60C6 11C10S25 - 48C8520 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5Mo1V3 TAH3; XT35Cr5Mo1V4 TAC21; XT160Cr12 - TAH7; T55Ni7Cr4Mo5V
1.0044 S27 1.0050 E29 1.0060 E33 1.0301 C10 1.0345 P23 1.0401 C15 1.0402 C22 1.0473 P35 1.0501 C35 1.0503 C45 1.0503 C45 1.0504 P35 1.0505 C45 1.0562 P35 1.0601 C60 1.0715 115 1.0727 465 1.0727 465 1.2312 400 1.2312 400 1.2314 X33 1.2343 X37 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2767 455 High speed steel 1.3343 1.5415 16M 1.5423 16M 1.5423 16	5 5 5 5 5 5 5 5 5 5 5 5 5 5	St 50-2 St 60-2 - St 35.8 - - 19 Mn 6 17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5.1 X100CrMoV 5.1 X100CrMoV 5.1 X100CrMoV 5.1 St 53CrMoV 12 105WCr6 56 NiCrMoV 7	Q275A; U12752 HRB 335; L33350 DX 1; U59110 Q245R; U50245 15; U20152 - Q345R; U50345 - - - - - - Y35; U70352 Y45; U70352 Y45; U70452 Cr2; T30201 - - - Cr2; T30201 - - Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	E350 Fe540 10C4 Fe360H 14C6 20C8 - - - 35C8 45C8 - 60C6 11C10525 - 48C8520 TAC6; T105Cr5 - - - TAH2; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0050 E29 1.0060 E33 1.0301 C10 1.0345 P23 1.0401 C15 1.0402 C22 1.0473 P35 1.0503 C45 1.0562 P33 1.0562 P35 1.0561 C60 1.0715 115 1.0726 355 1.2067 102 1.2312 400 1.2314 X40 1.2315 X37 1.2344 X40 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2767 45N High speed steel 1.343 1.5415 16M 1.5415 16M 1.6311 20N Case hardened steel 1.6311	5 5 5 5 5 5 5 5 5 5 5 5 5 5	St 50-2 St 60-2 - St 35.8 - - 19 Mn 6 17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5.1 X100CrMoV 5.1 X100CrMoV 5.1 X100CrMoV 5.1 St 53CrMoV 12 105WCr6 56 NiCrMoV 7	Q275A; U12752 HRB 335; L33350 DX 1; U59110 Q245R; U50245 15; U20152 - Q345R; U50345 - - - - - - Y35; U70352 Y45; U70352 Y45; U70452 Cr2; T30201 - - - Cr2; T30201 - - Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	E350 Fe540 10C4 Fe360H 14C6 20C8 - - - 35C8 45C8 - 60C6 11C10525 - 48C8520 TAC6; T105Cr5 - - - TAH2; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0060 E33 1.0301 C10 1.0345 P23 1.0401 C15 1.0402 C22 1.0473 P35 1.0481 P29 1.0501 C35 1.0503 C45 1.0504 P35 1.0505 P35 1.0501 C35 1.0502 P35 1.0503 C45 1.0715 115 1.0726 355 1.0727 465 Tool steel 1 1.2316 X04 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2714 S5N 1.2714 S5N 1.2767 45N High speed steel 1 1.5415 16M 1.5423 16311 1.6311 20N	5 5GH 5GH 5GH 5GH 5GH 5N 5N 5N 5N 5N 5N 5N 5N 5N 5N	St 60-2 - St 35.8 - - 19 Mn 6 17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 - 9SMn28 35 S 20 45 S 20 - 7 X 36 CrMo 17 X 36 CrMo 17 X 38 CrMoV 5 1 X 40CrMoV 5.1 X 40CrMoV 5.1 X 105 WCr6 56 NiCrMoV 7	HRB 335; L33350 DX 1; U59110 Q245R; U50245 15; U20152 - - - - - - - - - Y35; U70352 Y45; U70352 Y45; U70452 Cr2; T30201 - - - Cr2; T30201 - - Cr2; T30201 Cr2; T3020 Cr2; T3020 Cr2; T3020	Fe540 10C4 Fe360H 14C6 20C8 - - 35C8 45C8 - 60C6 11C10525 - 48C8520 TAC6; T105Cr5 - - TAH2; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0301 C10 1.0345 P23 1.0401 C15 1.0402 C22 1.0473 P35 1.0481 P29 1.0501 C35 1.0503 C45 1.0562 P35 1.0726 355 1.0715 115 1.0726 355 1.0727 465 Tool steel 12316 1.2343 X37 1.2343 X37 1.2343 X37 1.2343 X10 1.2343 X10 1.2343 X10 1.2343 X37 1.214 550 1.2714 550 1.2767 458 High speed steel 1.3343 1.5415 16M 1.5415 16M 1.5415 16M 1.6311 20M	5GH 5GH 5GH 5GH 5N 5N 5N 20 20 20 Cr6 crMoN5-1 CrMoV5-1 CrMoV5-1 CrMoV5-1 CrMoV5-3 3CrMoV12 WCr6 LiCrMoV7	- St 35.8 - - 19 Mn 6 17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5.1 X40CrMoV 5.1 X100CrMoV 5.1 X153CrMoV 12 105WCr6 56 NiCrMoV 7	DX 1; U59110 Q245R; U50245 15; U20152 - Q345R; U50345 - - - - Y35; U70352 Y45; U70452 Cr2; T30201 - - Cr2; T30201 - - Cr2; T30201 - Cr2; T30201 - - Cr2; T30201 - - - Cr2; T30201 - - - Cr2; T30201 - - - - - - - - - - - - -	10C4 Fe360H 14C6 20C8 - - 35C8 45C8 - 60C6 11C10525 - 48C8520 TAC6; T105Cr5 - - TAH2; XT35Cr5MoV3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0345 P23 1.0401 C15 1.0402 C22 1.0473 P35 1.0481 P29 1.0501 C35 1.0562 P35 1.0562 P35 1.0765 115 1.0715 115 1.0727 465 Tool steel 1 1.2312 400 1.2312 400 1.2343 X37 1.2344 X40 1.2343 X10 1.2343 H52 Construction, machir 1.5415 1.6311 200 Case hardened steel	5GH 5GH 5GH 5GH 5N 5N 5N 5N 5N 5N 5N 5N 5N 5N 5N 5N 5N	- - 19 Mn 6 17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 36 CrMo 17 X 38 CrMoV 5 1 X 40 CrMoV 5 1 X 50 CrMoV 7 56 NiCrMoV 7	Q245R; U50245 15; U20152 - Q345R; U50345 - - - - - Y35; U70352 Y45; U70452 - Cr2; T30201 - - Cr2; T30201 - - Cr2; T30201 - Cr2; T30201 - Cr2; T30201 - - Cr2; T30201 - - Cr2; T30201 - - Cr2; T30201 - - - Cr2; T30201 - - - - - - - - - - - - -	Fe360H 14C6 20C8 - - 35C8 45C8 - 60C6 11C10S25 - 60C6 11C10S25 - TAC6; T105Cr5 - TAC6; T105Cr5 - TAC6; T105Cr5 - TAH2; XT35Cr5MoV1 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0401 C15 1.0402 C22 1.0473 P35 1.0481 P29 1.0503 C45 1.0503 C45 1.0562 P35 1.0601 C60 1.0715 115 1.0726 355 1.0727 465 Tool steel 1 1.2312 400 1.2313 X37 1.2344 X40 1.2343 X10 1.2379 X15 1.2414 5b 1.2767 45b High speed steel 1.3343 1.5415 16M 1.5415 16M 1.5415 16M 1.6311 20N	5GH 5GH 5SH 5N 5N 20 20 20 20 Cr6 CrMnNoS8-6 CrMnNoS8-6 CrMoV5-1 CrMoV5-1 CrMoV5-1 CrMoV5-1 0CrMoV5 3CrMoV12 WCr6 liCrMoV7	- - 19 Mn 6 17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 36 CrMo 17 X 38 CrMoV 5 1 X 40 CrMoV 5 1 X 50 CrMoV 7 56 NiCrMoV 7	15; U20152 - Q345R; U50345 - - - - - - - Y35; U70352 Y45; U70452 - Cr2; T30201 - - - Cr2; T30201 - - - Cr2; T30201 - - - Cr2; T30201 - - - - Cr2; T30201 - - - - - - - - - - - - -	14C6 20C8 - - 35C8 45C8 - 60C6 11C10S25 - - 40C6; T105Cr5 - - TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH2; XT35Cr5Mo1V3 TAH2; XT35Cr5Mo1V4 TAC21; XT160Cr12 -
1.0402 C22 1.0473 P35 1.0481 P29 1.0503 C45 1.0562 P35 1.0601 C60 1.0715 115 1.0726 355 1.0727 465 Tool steel 1 1.2312 400 1.2313 X37 1.2344 X40 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2747 45N High speed steel 1 1.3343 H52 Construction, machir 1.5415 1.5415 16M 1.5423 16M 1.6311 20N	5GH 5GH 5GH 5N 5N 20 20 20 20 Cr6 CrMnNoS8-6 CrMnNoS8-6 CrMoV5-1 CrMoV5-1 CrMoV5-1 CrMoV5-1 CrMoV5 3CrMoV12 WCr6 LiCrMoV7	17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5 1 X40CrMoV 5 1 X100CrMoV 5 1 X153CrMoV 12 105WCr6 56 NiCrMoV 7	- Q345R; U50345 - - - - - - - - - - - Y35; U70352 Y45; U70452 Cr2; T30201 - - - Cr2; T30201 - - - Cr2; T30201 Cr2; T30200 Cr2; T30200 Cr2; T30200 Cr2; T30200 Cr2; T30200 Cr2; T30200 Cr2;	20C8 - - 35C8 45C8 - 60C6 11C10525 - 48C8520 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH2; XT35Cr5Mo1V1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0473 P35 1.0481 P29 1.0501 C35 1.0503 C45 1.0504 P35 1.0505 P35 1.0562 P35 1.0715 115 1.0726 355 1.0727 465 Tool steel 102 1.2316 X38 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2714 555 1.2714 555 1.2714 555 1.3343 H56 Construction, machir 1.5415 1.5415 16M 1.6311 20M	5GH 5GH 5GH 5N 5N 20 20 20 20 Cr6 CrMoNoS8-6 CrMoNoS8-6 CrMoV5-1 CrMoV5-1 CrMoV5-1 CrMoV5-1 CrMoV5 3CrMoV12 WCr6 LiGrMoV7	17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5 1 X40CrMoV 5 1 X100CrMoV 5 1 X153CrMoV 12 105WCr6 56 NiCrMoV 7		- - 35C8 45C8 - 60C6 11C10S25 - 48C8520 TAC6; T105Cr5 - - TAH2; XT35Cr5MoV1 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0481 P29 1.0501 C35 1.0503 C45 1.0562 P35 1.0601 C60 1.0715 115 1.0726 355 1.0727 465 Tool steel 12 1.2310 400 1.2314 X40 1.2343 X37 1.2343 X10 1.2363 X10 1.2379 X15 1.2714 S5N 1.2714 S5N 1.2714 S5N 1.2714 S5N 1.2714 S5N 1.2715 16M 1.5415 16M 1.5423 16 1.5431 20N Case hardened steel 12631	5GH 5N 5N 20 20 20 Cr6 CrMoNS-6 CrMoNS-1 CrMoVS-1 CrMoVS-1 CrMoVS-3 3CrMoVS-3 3CrMoV12 WCr6 LiCrMoV7	17 Mn 4 - C 45 StE 355 - 9SMn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5 1 X40CrMoV 5 1 X100CrMoV 5 1 X153CrMoV 12 105WCr6 56 NiCrMoV 7		- 35C8 45C8 - 60C6 11C10525 - 48C8520 TAC6; T105Cr5 - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0501 C35 1.0503 C45 1.0562 P35 1.0601 C60 1.0715 115 1.0726 355 1.0727 465 Tool steel 102 1.2312 400 1.2314 X40 1.2343 X37 1.2343 X10 1.2707 45N High speed steel 1.343 1.5415 16M 1.5415 16M 1.6311 20N Case hardened steel 1.6311	5N Mn30 20 20 Cr6 CrMoNoS8-6 CrMoV5-1 CrMoV5-1 CrMoV5-1 OCrMoV5-3 3CrMoV12 WCr6 liCrMoV7	- C 45 StE 355 - 9SMn28 35 S 20 4 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5 1 X40CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	45C8 - 60C6 11C10S25 - 48C8S20 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0503 C45 1.0562 P35 1.0562 P35 1.0601 C60 1.0715 115 1.0727 465 Tool steel 1 1.2067 102 1.2312 400 1.2314 X30 1.2343 X37 1.2344 X40 1.2343 X10 1.2343 X10 1.2343 X10 1.2343 X10 1.2343 X10 1.2344 X40 1.2343 X10 1.2344 X40 1.2343 X10 1.2344 X40 1.2343 HSé Construction, machin 1.5415 1.5415 16M 1.5415 16M 1.6311 20M Case hardened steel 1.6311	5N Mn30 20 20 Cr6 CrMoNoS8-6 CrMoV5-1 CrMoV5-1 CrMoV5-1 0CrMoV5 3CrMoV12 WCr6 liCrMoV7	StE 355 - 95Mn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	45C8 - 60C6 11C10S25 - 48C8S20 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0503 C45 1.0562 P35 1.0562 P35 1.0601 C60 1.0715 115 1.0727 465 Tool steel 1 1.2067 102 1.2312 400 1.2314 X30 1.2343 X37 1.2344 X40 1.2343 X10 1.2343 X10 1.2343 X10 1.2343 X10 1.2343 X10 1.2344 X40 1.2343 X10 1.2344 X40 1.2343 X10 1.2344 X40 1.2343 HSé Construction, machin 1.5415 1.5415 16M 1.5415 16M 1.6311 20M Case hardened steel 1.6311	5N Mn30 20 20 Cr6 CrMoNoS8-6 CrMoV5-1 CrMoV5-1 CrMoV5-1 0CrMoV5 3CrMoV12 WCr6 liCrMoV7	StE 355 - 95Mn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	45C8 - 60C6 11C10S25 - 48C8S20 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0562 P35 1.0601 C60 1.0715 115 1.0726 355 1.0727 465 Tool steel 100 1.2312 400 1.2314 X37 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2767 45N High speed steel 1.3343 1.5415 16M 1.5423 16M 1.6311 20N Case hardened steel 1.6311	5N Mn30 20 20 Cr6 CrMnNoS8-6 CrMo16 CrMoV5-1 CrMoV5-1 CrMoV5-1 OCrMoV5 3CrMoV12 WCr6 liCrMoV7	StE 355 - 95Mn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	- 60C6 11C10S25 - 4C8S20 TAC6; T105Cr5 - - TAH2; XT35Cr5MoV1 TAH2; XT35Cr5MoV1 TAU3Cr20Mo10V4 TAC21; XT160Cr12 -
1.0601 C60 1.0715 115 1.0726 355 1.0727 465 Tool steel 1 1.2067 102 1.2017 405 1.2067 102 1.2312 400 1.2316 X38 1.2343 X37 1.2344 X40 1.2379 X15 1.2419 105 1.2714 55M 1.2767 45M High speed steel 1.3343 1.5415 16M 1.54215 16M 1.5423 160 1.6311 20M	Mn30 20 20 Cr6 CrMnNoS8-6 CrMoV5-1 CrMoV5-1 CrMoV5-1 OCrMoV5 3CrMoV12 WCr6 LiCrMoV7	- 95Mn28 35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	11C10S25 - 48C8S20 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0715 115 1.0726 355 1.0727 465 Tool steel 1 1.2067 102 1.2312 400 1.2313 X38 1.2344 X40 1.2353 X17 1.2344 X40 1.2379 X15 1.2717 458 High speed steel 1.3343 1.3343 H56 Construction, machine 1.5415 1.5415 164 1.5423 16311 20M Case hardened steel	Mn30 20 20 Cr6 CrMnNoS8-6 CrMoV5-1 CrMoV5-1 OCrMoV5-1 OCrMoV5 3CrMoV12 WCr6 LiCrMoV7	35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40 CrMoV 5 1 X100 CrMoV 5 1 X153 CrMoV 5 1 X153 CrMoV 12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	11C10S25 - 48C8S20 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0726 355 1.0727 465 Tool steel 102 1.2016 102 1.2312 400 1.2314 X40 1.2363 X10 1.2379 X15 1.2717 45N High speed steel 1.3343 1.3343 H5C Construction, machin 1.5425 1.5425 16M 1.5423 120K Case hardened steel 1.5421	20 20 rrMnMoS8-6 CrMo16 CrMoV5-1 CrMoV5-1 OCrMoV5-3 3CrMoV5 3CrMoV12 WCr6 liCrMoV7	35 S 20 45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40 CrMoV 5 1 X100 CrMoV 5 1 X153 CrMoV 12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	- 48C8S20 TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.0727 465 Tool steel 1.2067 102 1.2307 400 1.2316 X38 1.2343 X37 1.2343 X37 1.2343 X10 1.2363 X10 1.2379 X15 1.2419 105 1.2714 55N 1.2767 45N High speed steel 1.3343 HSC Construction, machir 1.5415 16M 1.5423 160 1.6311 20N Case hardened steel 1.6311 20N	20 Cr6 rMnMoS8-6 CrMoV5-1 CrMoV5-1 OCrMoV5-3 OCrMoV5 3CrMoV12 WCr6 liCrMoV7	45 S 20 100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Y45; U70452 Cr2; T30201 - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
Tool steel 1.2067 102 1.2312 400 1.2316 X38 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2714 S5N 1.2767 45N High speed steel 1.3343 1.5415 16M 1.5423 16M 1.6311 20N Case hardened steel 1.6311	Cr6 rMnMoS8-6 CrMo16 CrMoV5-1 CrMoV5-1 OCrMoV5 3CrMoV5 3CrMoV12 WCr6 liCrMoV7	100 Cr 6 - X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Cr2; T30201 - - 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	TAC6; T105Cr5 - - TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.2067 102 1.2312 400 1.2316 X38 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2714 55N 1.2767 45N High speed steel 1.3343 1.5415 16M 1.5423 15M 1.5423 16M 1.6311 20M	rMnMoS8-6 CrMo16 CrMoV5-1 CrMoV5-1 OCrMoV5 SCrMoV5 SCrMoV12 WCr6 liCrMoV7	- X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5-1 X100CrMoV 5-1 X153CrMoV 12 105WCr6 56 NiCrMoV 7	- 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	- TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12
1.2312 400 1.2316 X38 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2714 55N 1.2767 45N High speed steel 1.3343 1.5415 16M 1.5423 160 1.5423 16M 1.6311 20M	rMnMoS8-6 CrMo16 CrMoV5-1 CrMoV5-1 OCrMoV5 SCrMoV5 SCrMoV12 WCr6 liCrMoV7	- X 36 CrMo 17 X 38 CrMoV 5 1 X40CrMoV 5-1 X100CrMoV 5-1 X153CrMoV 12 105WCr6 56 NiCrMoV 7	- 4Cr5MoSiV; T20501 SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	- TAH2; XT35Cr5Mo1V3 TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12
1.2316 X38 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2714 555 1.2767 455 High speed steel 1.3343 1.5435 16h 1.5415 16h 1.5423 160 1.6311 20N	CrMo16 CrMoV5-1 CrMoV5-1 OCrMoV5 3CrMoV5 3CrMoV12 WCr6 liCrMoV7	X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.2316 X38 1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2714 555 1.2767 455 High speed steel 1.3343 1.5435 16h 1.5415 16h 1.5423 160 1.6311 20N	CrMo16 CrMoV5-1 CrMoV5-1 OCrMoV5 3CrMoV5 3CrMoV12 WCr6 liCrMoV7	X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.2343 X37 1.2344 X40 1.2363 X10 1.2379 X15 1.214 555 1.2714 555 1.2714 555 1.2767 455 High speed steel 1.3343 1.3343 H56 Construction, machin 1.5415 1.5425 160 1.5423 160 1.6311 200	CrMoV5-1 CrMoV5-1 OCrMoV5 3CrMoV12 WCr6 IiCrMoV7	X 38 CrMoV 5 1 X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.2344 X40 1.2363 X10 1.2379 X15 1.2419 105 1.2714 55N 1.2767 45N High speed steel 1.3343 1.5415 16M 1.5415 16M 1.6311 20N	CrMoV5-1 0CrMoV5 3CrMoV12 WCr6 liCrMoV7	X40CrMoV5-1 X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	SM 4Cr5MoSiV1; T22052 Cr5Mo1V; T20503 Cr12Mo1V1; T21202	TAH3; XT35Cr5MoV1 T100Cr20Mo10V4 TAC21; XT160Cr12 -
1.2363 X10 1.2379 X15 1.2419 105 1.2767 45N High speed steel 1.3343 1.5415 16M 1.5423 16M 1.6311 20N Case hardened steel 1.6311	0CrMoV5 3CrMoV12 WCr6 IiCrMoV7	X100CrMoV5-1 X153CrMoV12 105WCr6 56 NiCrMoV 7	Cr5Mo1V; T20503 Cr12Mo1V1; T21202	T100Cr20Mo10V4 TAC21; XT160Cr12
1.2379 X15 1.2419 105 1.2714 55N 1.2767 45N High speed steel 1.3343 1.3343 HSC Construction, machin 1.5415 1.5423 16M 1.6311 20N Case hardened steel 1.6311	3CrMoV12 WCr6 IiCrMoV7	X153CrMoV12 105WCr6 56 NiCrMoV 7	Cr12Mo1V1; T21202	TAC21; XT160Cr12 -
1.2419 105 1.2714 55N 1.2767 45N High speed steel 1 1.3343 H5C Construction, machin 1.5415 1.5423 16M 1.5423 16M 1.6311 20M	WCr6 liCrMoV7	105WCr6 56 NiCrMoV 7		-
1.2714 55M 1.2767 45M High speed steel 1.3343 1.3343 HS6 Construction, machin 1.5415 1.5423 16M 1.5423 16M 1.6311 20M Case hardened steel 1.6	liCrMoV7	56 NiCrMoV 7	CrWMn; T20111 - -	- TAH7; T55Ni7Cr4Mo5V -
1.2767 45N High speed steel 1.3343 1.3343 HS6 Construction, machin 1.5415 1.5415 16M 1.5423 16M 1.6311 20M Case hardened steel 1.641			-	TAH7; T55Ni7Cr4Mo5V -
High speed steel 1.3343 HS6 Construction, machin 1.5415 1.5415 16M 1.5423 16M 1.6311 20M Case hardened steel 1.641	liCrMo16	X 45 NiCrMo 4	-	-
1.3343 HS& Construction, machin 1.5415 1.5415 16M 1.5423 16M 1.6311 20M Case hardened steel 1				
Construction, machin 1.5415 16M 1.5423 16M 1.6311 20M Case hardened steel 16M				
Construction, machin 1.5415 16M 1.5423 16M 1.6311 20M Case hardened steel 16M	-5-2C	DMo 5	W6Mo5Cr4V2; T66541	THS4; XT87W6Mo5Cr4
1.5415 16M 1.5423 16M 1.6311 20M Case hardened steel				,
1.5423 16M 1.6311 20M Case hardened steel		15 Mo 3	15MoG; A65158	16Mo3H
1.6311 20N Case hardened steel		13 100 3	15W00, A05150	
Case hardened steel		-	-	15Mo6H
	InMoNi4-5	-	-	-
1.7131 16N				1
	InCr5	-	20CrMnH; A22205	16Mn5Cr4
1.7147 201	InCr5	-	20CrMnAH; A22207	20Mn5Cr5
Tempering steel				
1.7262 150	rMo5	-	-	15Cr4Mo3
	rMo4	-	30CrMo; A30302	CDS-7
	rMo4	_	42CrMo; A30422	CDS-8
	rNiMo6		720100, 730422	36Ni6Cr6Mo2
		-	-	JOINIOCIOWOZ
Heat resistant steel				
	loCr4	-	-	-
	rMo4-5	13 CrMo 4 4	12CrMo; A30122	12Cr4Mo5H
1.7362 X12	CrMo5	-	1Cr5Mo; S45110	10Cr20Mo6
1.7380 100	rMo9-10	10 CrMo 9 10	12Cr2Mo1R; A30127	12Cr9Mo10H
1.7386 X11	CrMo9-1	X12CrMo9-1	-	10Cr36Mo10H
Spring steel				
1.7176 550	r3	_	55CrMnA; A22553	TAC23; T55Cr3
		- 50 CrV 4		
	114	JU CIV 4	50CrVA; A23503	50Cr4V2
Nitriding steel				
	rAlMo5-10	34CrAIMo5	-	-
1.8519 310	rMoV9	-	-	-
1.8550 340	rAlNi7-10	-	-	-
Fine grained steel				
1.8902 S42		StE 420	Q420C; L04203	

JP	RU	USA	Strength / Hardness	Machinability
Unalloyed steel	NO	004	Strength / Hardness	macinitability
STKR 400	St4sp	1020	380-580 MPa	
		1020		++
SS 490	St5sp	-	440-660 MPa	++
SM 570	St6sp	-	540-770 MPa	++
S 10 C	10	1010	490-780 MPa	++
SPV 450	-	K02801	360-500 MPa	++
S 15 C	15	1015	330-600 MPa	++
S 22 C	-	1022	380–580 MPa	++
SPV 355	-	K12437	510-650 MPa	++
SPV 315	14G2	K03501	460-580 MPa	++
S 35 C	-	1035	550-780 MPa	++
S 45 C	-	1045	630-850 MPa	++
SM 490 A	15GF	K12609	450-630 MPa	++
S 58 C	60	1060	750-1000 MPa	++
SUM 22	00	1215	360-570 MPa	
501WI 22	-			++
-	-	1140	500-720 MPa	++
-	-	1139	580-760 MPa	++
Tool steel				
SUJ 2	Ch	52100; J19965	≤ 223 HB	++
-	-	-	≤ 230 HB	++
-	-	-	≤ 250 HB	++
SKD 6	4Ch5MFS	H 11	≤ 229 HB	+
SKD 61	4Ch5MF1S	H 13	≤ 229 HB	+
SKD 12	-	A 2	≤ 241 HB	+
SKD 10	_	D 2	≤ 255 HB	
SKS 2	ChW1G	52	≤ 230 HB	+
SKT 4	5ChGNM	L6	≤ 230 HB ≤ 248 HB	++
	SCHONIM	LO		
SKT 6	-	-	≤ 285 HB	++
High speed steel				
SKH 51	R6M5	M 2	≤ 269 HB	-
Construction, machine and	d container steel			
STFA 12	-	-	440–590 MPa	++
SB 450 M	-	4419 H	450-590 MPa	++
SQV 2 A	-	K12554	570-750 MPa	++
Case hardened steel				
-	18ChG	5115	≤ 550 MPa	++
SMnC 420 (H)	-	5120	780-1370 MPa	++
Tempering steel				
SCM 415	_	_	≤ 207 MPa	++
SCM 420 TK	30ChM	4130	≤ 580 MPa	++
SCM 440 (H)	JUCHW	4130	≤ 630 MPa	++
SNCM440(H) SNCM447	- 38Ch2N2MA	4340	≤ 680 MPa	
	SOCIIZINZIVIA	4340	≤ 000 IPa	++
Heat resistant steel		4440		
-	-	4118	≤ 550 MPa	++
STPA 22	12ChM	K12062	450-660 MPa	++
STPA 25	-	501	590-740 MPa	+
STPA 24	12Ch8	K21590	480-630 MPa	++
STPA 26	-	K90941	590-740 MPa	+
Spring steel				
SUP 9	50ChGA	5160	≤ 210 HB	++
SUP 10	50ChFA	6145	≤ 248 HB	+
Nitriding steel				
-	-	K23510	≤ 1000 MPa	++
		125510	1100-1230 MPa	+
-	-	KEDAAD		
-	-	K52440	1000–1470 MPa	++
Fine grained steel		W4040-	F00 / C0115	
SM 490 C	-	K12437	500-680 MPa	•

Workpiece material comparison chart

	Material No.	Designation	Old designation	CN	IN
	Stainless steel	with < 2,5% Ni			
	1.4002	X6CrAI13	-	06Cr13Al; S11348	X04Cr12 (405)
	1.4006	X12Cr13	X10Cr13	12Cr12; \$40310	X12Cr12
	1.4016	X6Cr17	_	10Cr17; S11710	X07Cr17
	1.4021	X20Cr13	X20Cr13	20Cr13; \$42020	X20Cr13
	1.4028	X30Cr13	_	30Cr13; \$42030	X30Cr13
	1.4031	X39Cr13	_	40Cr13; \$42040	X40Cr13
	1.4034	X46Cr13	_	-	-
	1.4057	X17CrNi16-2	X 22 CrNi 17	17Cr16Ni2; \$43120	X15Cr16Ni2
		with Mo and < 2,5% Ni	X 22 CINI 17	170110112, 343120	ATSCHOMZ
	1.4104	X14CrMoS17	X 12 CrMoS 17	Y10Cr17; S11717	
	1.4104	X6CrMo17-1	X 12 CIWOS 17	10Cr17Mo; S11790	-
			-	100117100, 311790	-
		with $\geq 2,5\%$ Ni	Y E C-N: 10 0	0/ C-101:0- C20400	V046-10N:0
	1.4301	X5CrNi18-10	X 5 CrNi 18-9	06Cr19Ni9; S30408	X04Cr19Ni9
	1.4303	X4CrNi18-12	X5CrNi18-12	06Cr18Ni12; \$30508	X04Cr18Ni10
	1.4305	X8CrNiS18-9	X 10 CrNiS 18 9	Y12Cr18Ni9; S30317	-
	1.4306	X2CrNi19-11	-	022Cr19Ni10; S30403	X02Cr19Ni10
	1.4310	X10CrNi18-8	X12CrNi17-7	12Cr17Ni17; \$30110	X07Cr18Ni9
	1.4311	X2CrNiN18-10	-	022Cr19Ni10N; \$30453	TP304LN
M	1.4317	GX4CrNi13-4	-	ZG06Cr12Ni4; C54860	-
	1.4362	X2CrNiN23-4	-	022Cr23Ni4MoCuN; S23043	-
	1.4371	X2CrMnNiN17-7-5	-	12Cr18Mn9Ni5N; \$35450	TP202
	Stainless steel	with Mo and ≥ 2,5% Ni			
	1.4401	X5CrNiMo17-12-2	X 5 CrNiMo 18 10	06Cr17Ni12Mo2; \$31608	X04Cr17Ni12Mo2
	1.4404	X2CrNiMo17-12-2	-	022Cr17Ni12Mo2; S31603	X02Cr17Ni12Mo2
	1.4429	X2CrNiMoN17-13-3	-	022Cr17Ni12Mo2N; \$31653	X04Cr17Ni12Mo2N
	1.4438	X2CrNiMo18-15-4	-	022Cr19Ni13Mo3; \$31703	TP317L
	1.4462	X2CrNiMoN22-5-3	-	022Cr22Ni5Mo3N; S22253	-
	Stainless steel	with special additives			
	1 4501	VOC-NIMACUMNIDE 7.4		022Cr25Ni7Mo4WCuN;	
	1.4501	X2CrNiMoCuWN25-7-4	-	S27603	-
	1.4510	X3CrTi17	-		-
	1.4512	X2CrTi12	-	022Cr11NbTi; S11173	-
	1 4520	VAN: C M C 05 00 5	VANCE N. C. NOF DO F	015Cr21Ni26Mo5Cu2;	
	1.4539	X1NiCrMoCu25-20-5	X 1 NiCrMoCuN 25 20 5	S31782	-
	1.4541	X6CrNiTi18-10	X 6 CrNiTi 18 10	06Cr18Ni11Ti; S32168	X04Cr18Ni10Ti
	1.4542	X5CrNiCuNb16-4	X 5 CrNiCuNb 17 4	05Cr17Ni4Cu4Nb; \$51740	-
	1.4550	X6CrNiNb18-10	X 6 CrNiNb 18 10	1Cr19Ni11Nb; S34771	X04Cr18Ni10Nb
	1.4571	X6CrNiMoTi17-12-2	X 6 CrNiMoTi 17 12 2	06Cr17Ni12Mo2Ti; S31668	X04Cr17Ni12Mo2Ti
	Cast iron with	flake graphite			
	EN-JL1020	EN-GJL-150	GG-15	HT150; C00150	_
	EN-JL1020	EN-GJL-200	GG-20	HT200; C00200	_
	EN-JL1040	EN-GJL-250	GG-25	HT250; C00250	
	EN-JL1040	EN-GJL-300	GG-30	HT300; C00300	
	EN-JL1050 EN-JL1060	EN-GJL-350	GG-35	HT350; C00350	-
			00-35	H1330, C00330	-
	Modular cast in		CCC 40	01400 15, 001401	
	EN-JS1072	EN-GJS-400-15U	GGG-40	QT400-15; C01401	-
17	EN-JS1082	EN-GJS-500-7U	GGG-50	-	-
K	EN-JS1092	EN-GJS-600-3U	GGG-60	-	-
	EN-JS1102	EN-GJS-700-2U	GGG-70	QT700-2; C01700	-
	EN-JS1080	EN-GJS-800-2	GGG-80	QT800-2; C01800	-
	Malleable cast				
	EN-JM1130	EN-GJMB-350-10	GTS-35-10	KTH350-10; C02354	-
	EN-JM1140	EN-GJMB-450-6	GTS-45-06	KTZ450-06; C02452	-
	EN-JM1160	EN-GJMB-550-4	GTS-55-04	KTZ550-04; C02551	-
	EN-JM1180	EN-GJMB-650-2	GTS-65-02	KTZ650-02; C02650	-
	EN-JM1190	EN-GJMB-700-2	GTS-70-02	KTZ700-02; C02700	-

JP	RU	USA	Strength / Hardness	Machinability
		USA	Strength / Haruness	Maciniability
Stainless steel with < 2,5	% NI	405	400 (00 MD-	
SUS 405TB	-		400-600 MPa	•
SUS 410-SD	15Ch13L	410	≤ 730 MPa	+
SUS 430TB	12Ch17	430	400-630 MPa	+
SUS 420J1	20Ch13	420	≤ 760 MPa	+
SUS 420J2	30Ch13	420 F	≤ 800 MPa	+
-	-	S42080	800-1000 MPa	+
-	40Ch13	S42000	≤ 950 MPa	+
SUS 431	20Ch17N2	431	≤ 950 MPa	+
Stainless steel with Mo an	nd < 2,5% Ni			
SUS 430F	-	430 F	≤ 730 MPa	+
SU S434	-	434	440-660 MPa	
Stainless steel with ≥ 2,5	% Ni			
SUS 304-SD	08Ch18N10	304	500-700 MPa	-
SUS 305	06Ch18N11	305 L	500-700 MPa	
SUS 303	-	303	500-750 MPa	-
SUS 304LTB	03Ch18N11	304 L	460-680 MPa	-
SUS 301	12Ch18N9	301	500-750 MPa	
SUS 304LN	-	304 LN	550-760 MPa	
SCS 6	-	J91540	760-960 MPa	-
-	-	\$32304	600-830 MPa	
_	_	_	650-850 MPa	
Stainless steel with Mo ar	nd > 2.5% Ni		050 050 101 0	
SUS 316-SD	08Ch16N11M3	316 H	500-700 MPa	
SUS 316LTP	03Ch17N14M3	316 L	500-700 MPa	-
	03011710141013			
SUS 316LN	-	316 LN	580-800 MPa	
SUS 317LTB	-	317 L	500-700 MPa	-
SUS 329J3LTB	-	\$31803	650-880 MPa	1.
Stainless steel with speci-	al additives			
-	-	S32760	630-710 MPa	
SUS 430LXTB	08Ch17T	439	450-600 MPa	
SUS 409TB	0001171	409	390-560 MPa	-
30340710	-	407	370-300 Wil a	Ŧ
-	-	904 L	530-730 MPa	-
SUS 321TB	06Ch18N10T	321	500-700 MPa	-
SUS 630	-	S17400	≤ 1200 MPa	
SUS 347TB	08Ch18N12B	347	510-940 MPa	
SUS 316TiTB	08Ch16N11M3T	316 Ti	500-950 MPa	
Cast iron with flake graph	ite			
FC 15	Sč 15	ASTM A 48 (25B)	80-155 HB	++
FC 20	Sč 20	ASTM A 48 (30B)	115-205 HB	++
FC 25	Sč 25	ASTM A 48 (40B)	155-250 HB	+
FC 30	Sč 30	ASTM A 48 (40B)	195-270 HB	+
FC 35	Sč 30	ASTM A 48 (45B) ASTM A 48 (50B)	275-285 HB	+ +
	JUJJ	ASTIVIA 40 (50B)	27 J-20J HD	Ŧ
Modular cast iron	VC 40	ACTM A E27 (7.0 40.10)	> 400 MD-	
FCD 400	VC 40	ASTM A 536 (60-40-18)	≥ 400 MPa	+
FCD 500	VC 50	ASTM A 536 (60-45-12)	≥ 500 MPa	+
FCD 600	VC 60	ASTM A 536 (80-55-06)	≥ 600 MPa	+
FCD 700	VC 70	ASTM A 536 (100-70-03)	≥ 700 MPa	
FCD 800	VC 80	ASTM A 536 (120-90-02)	≥ 800 MPa	-
Malleable cast iron				
FCMB 340	KC 35-10	ASTM A 47 (Grade 22010)	≥ 350 MPa	+
-	KC 45-7	-	≥ 450 MPa	+
FCMP 540	KC 55-4	-	≥ 550 MPa	+
-	KC 63-3	-	≥ 650 MPa	+
FCMP 690	KC 70-2	ASTM A 220 (Grade 70003)	≥ 700 MPa	+

Workpiece material comparison chart

NUMBER Discretion Discretion Discretion RAW-005 AMM_1 83.315 - - EN AW-505 AMM_2 33.315 - - EN AW-506 AMM_2 33.347 - - EN AW-508 AMM_2 33.347 - - EN AW-508 AMM_3 33.347 - - EN AW-2017 ALCMM_1 31.354 - - EN AW-2016 ALCMM_1 31.354 - - EN AW-7010 ALTACMM_1 31.364 - - EN AW-7010 ALTACMM_1<		Material No.	Designation	Old designation	CN	IN
FNAW-5005 AlMg1 33.315 - - FNAW-5005 AlMg2,5 33.523 - - FNAW-5008 AlMg2,5 33.523 - - FNAW-5008 AlMg2,5 M0,07 33.247 - - FNAW-5001 AlMg510 33.247 - - FNAW-5001 AlMg510 33.247 - - FNAW-5001 AlMg510 33.214 - - FNAW-5002 AlCu4Mg1 31.354 - - FNAW-5005 AlZu6Qu1 34.394 - - FNAW-5005 AlZu6Qu1 34.394 - - FNAW-5005 AlZu6Qu1 34.384 - - FNAW-5005 AlZu6Qu1 32.583 G-AlSi12(Cu) - Cooperatope FNAW-5005 AlZu6Qu1 - - CW014N Cu2n39Pb3 20.401 - - Bronze - - - - CW614N						
FN AW-5032 AIMQ-5 33.523 - - FN AW-5032 AIMQ-5 33.547 - - FN AW-5061 AIMQ-5(0.5) 33.206 - - FN AW-6061 AIMQ-15(0.3) 33.214 - - FN AW-6061 AIMQ-15(0.3) 33.244 - - FN AW-5023 AI(CuMg1 31.354 - - FN AW-2024 AICu/Mg1 31.354 - - FN AW-5010 AIZn6/Mg2u 34.344 - - FN AW-7010 AIZn6/Mg2u 34.344 - - FN AW-7010 AIZn6/Mg2u 34.344 - - FN AW-7010 AIZn6/Mg2u 34.344 - - COpperalloys Cumber - - - CW021A Cu-HCP 20.070 - - - CW041M Cu2n39Pb3 20.401 - - - Brass - - - -			, , , ,			
FN AW-5083 AIM-6 (SM0,7) 33.547 - - FN AW-6084 AIM(9510,5) 33.206 - - - FN AW-6082 AIM(9511) 32.315 - - - FN AW-6082 AIM(9511) 32.315 - - - FN AW-6082 AIM(9511) 31.324 - - - FN AW-7050 AIZn6/CMMg1 31.354 - - - FN AW-7050 AIZn6/CMMg21 34.144 - - - FN AW-7050 AIZn6/CMMg21 34.344 - - - FN AW-7050 AIZn6/CMMg21 34.344 - - - FN AW-7050 AIZn6/SMG2(CU 34.344 - - - FN AW-7050 AIZn6/SMG2(CU 34.344 - - - CW021A Cu/Gn6 21.020 - - - - Brass - - - - - -			0		-	-
FN AW-6060 AlMg510,5 33.206 - - FN AW-6060 AlMg513(u 33.214 - - FN AW-602 AlMg511 32.315 - - FN AW-602 AlMg511 33.324 - - FN AW-2024 AlCuMg1 31.354 - - FN AW-7010 AlZn6MgCu 34.394 - - FN AW-7010 AlZn6MgCu 34.394 - - FN AW-7010 AlZn6MgCu 34.344 - - FN AC-7000 FN AC-A7000 FN AC-A7000 FN AC-A7000 - C00peralloys - - - - CW021A Cu-HCP 20.070 - - CW42X CuSn Z 20.401 - - Brass - - - - CW414N CuZn39Pb3 20.401 - - Torce - - - - MSCNISI3 X10 CrA113 <td></td> <td>EN AW-5052</td> <td>AIMg2,5</td> <td>33.523</td> <td>-</td> <td>-</td>		EN AW-5052	AIMg2,5	33.523	-	-
FN AW-6061 AlMg SiCu 33 214 - - FN AW-6061 AlMg Si1 32 315 - - - FN AW-2017 AlCuMg1 31 324 - - - FN AW-2017 AlCuMg1 31 354 - - - FN AW-2017 AlCuMgCu 34 394 - - - FN AW-7050 AlZn5,SMgCu 34 344 - - - FN AW-7050 AlZn5,SMgCu 34 344 - - - FN AW-7050 AlZn5,SMgCu 34 344 - - - FN AW-7050 AlZn5,SMgCu 34 364 - - - C00211 Cu-HCP 20.070 - - - - CW0214 CuEntPF 20.070 - - - - - Brass - 10.020 - - - - - - - - - - - - <		EN AW-5083	AlMq4,5Mn0,7	33.547	-	-
FN AW-6061 AlMg SiCu 33 214 - - FN AW-6061 AlMg Si1 32 315 - - - FN AW-2017 AlCuMg1 31 324 - - - FN AW-2017 AlCuMg1 31 354 - - - FN AW-2017 AlCuMgCu 34 394 - - - FN AW-7050 AlZn5,SMgCu 34 344 - - - FN AW-7050 AlZn5,SMgCu 34 344 - - - FN AW-7050 AlZn5,SMgCu 34 344 - - - FN AW-7050 AlZn5,SMgCu 34 364 - - - C00211 Cu-HCP 20.070 - - - - CW0214 CuEntPF 20.070 - - - - - Brass - 10.020 - - - - - - - - - - - - <		EN AW-6060		33,206	-	-
FM AW-6082 AlMigSi1 32.315 - - FM AW-2017 AlCuMg1 31.324 - - FM AW-2024 AlCuMg1 31.334 - - FM AW-2017 AlZuMg1 31.334 - - FM AW-2014 AlZuMg2 34.144 - - FM AW-7075 AlZu5,SMgCu 34.364 - - EN AK-7000 EN AC-47000 EN AC-47000 EN AC-47000 - CV021A Cu-HCP 20.070 - - CW452K CuSn6 21.020 - - Brass - - - - CV452K CuSn72n4Pb7-C 21.090 - - Brass - - - - C493K CuSn72n4Pb7-C 21.090 - - 14742 X10CrAlS118 X 10 CrAl 18 - - 14762 X10CrAlS18 X 10 CrAl 18 - - 14848 <			0		_	_
EN AW-2017 AlCuMg1 31.324 - - EN AW-2024 AlCu4Mg1 31.334 - - - EN AW-2024 AlCu4Mg1 31.334 - - - EN AW-2024 AlCu4Mg1 31.334 - - - EN AW-2017 AlZn5,SMgCu 34.344 - - - EN AW-2005 AlZn5,SMgCu 34.364 - - - EN AW-2005 AlZn5,SMgCu 34.364 - - - EN AW-2006 EN AC-ALSTI2(Cu) 32.583 GAISTI2(Cu) - - CV021A Cu-HCP 20.070 - - - - CV0452K Cu5n72n4Pb7-C 21.020 - - - - Branze - 1.072 X10CrAlST3 X10 CrAl 13 - - - 1.4742 X10CrAlST3 X10 CrAl 13 - - - - 1.4722 X10CrAlST3 X10 CrAl 13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Fit AW-2024 AlCutMg1 31.354 - - FN AW-7010 AlZn6MgCu 34.394 - - - FN AW-7010 AlZn6CMgCu 34.394 - - - FN AW-7010 AlZn6CMgZr 34.144 - - - FN AW-705 AlZn6CMgZr 34.364 - - - FN AW-705 AlZn6CMgZr 34.364 - - - FN AW-705 AlZn6CMgZr 34.364 - - - Coperalloys - - - - - CW021A Cu/FCP 20.070 - - - Brass CW614N Cu/Sn27 20.070 - - Brass CW614N Cu/Sn27 20.070 - - CV614S Cu/Sn28 20.401 - - - Hatresistant Steel - - - - - 14722 X10CrAIS18 X10 CrA1					-	-
N EN.W.7010 AlZn6MgCu 34.394 - - IN EN.AW.7050 AlZn6CuMgZr 34.144 - - EN.AW.7050 AlZn6S.MgCu 34.344 - - EN.AC.47000 EN.AC.AIS112(Cu) 32.583 G-AIS112(Cu) - Cooperalloys - - - - CW021A Cu-HCP 20.070 - - CW032K CuSn6 21.020 - - Brass - - - - CW041A CuSn72n4Pb2-C 21.090 - - Bronze - - - - CC493K CuSn72n4Pb2-C 21.090 - - 1.4762 X10CrAIS18 X 10 CrAI 13 - - 1.4742 X10CrAIS18 X 10 CrAI 13 - - 1.4762 X10CrAIS125 1 X 12 CrN 25 21 0C/25NI20512; S32040 X15Cr24NI13 1.4848 GX40CrNS125-12 - 1			0		-	-
N ENAW-7050 AlZn6CuMg2r 34.144 - - ENAW-7055 AlZn5,SMgCu 34.364 - - - ENAC-7000 ENAC-ALSI12(Cu) 32.583 G-AlSi12(Cu) - - Cooperalloys - - - - - CW021A Cu-HCP 20.070 - - - Brass - - - - - CW614N Cu2n3Pb3 20.401 - - - Bronze - - - - - CC493K CuSn7Zn4Pb7-C 21.090 - - - 1.4724 X10CrAlS18 X10 CrAl 13 - - - 1.4742 X10CrAlS18 X10 CrAl 18 - - - 1.4742 X10CrAlS18 X10 CrAl 24 - - - 1.4742 X10CrAlS19 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4845 X8CrNiS25-20 </td <td></td> <td></td> <td>°</td> <td></td> <td>-</td> <td>-</td>			°		-	-
ENAW 3030 MADROMINAL SHARA - - ENAC-37000 ENAC-A1S112(Cu) 32.583 G-AIS112(Cu) - Cooperalloys - - - - CW21A Cu HCP 20.070 - - CW352K CuSn6 21.020 - - Brass - - - - CV452K CuSn72n4Pb7-C 21.090 - - Heat resistant stel - - - 1.4724 X10CrAIS13 X 10 CrAI 13 - - 1.4724 X10CrAIS18 X 10 CrAI 13 - - 1.4724 X10CrAIS18 X 10 CrAI 13 - - 1.4724 X10CrAIS125 X 10 CrAI 13 - - 1.4724 X10CrAIS125 X 10 CrAI 24 - - 1.4724 X10CrAIS125 X 10 CrAI 24 - - 1.4724 X10CrAIS125 X 10 CrAI 24 - - 1.4848 <td>N</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>	N				-	-
EN AC-47000 EN ACAI S112(Cu) 32.583 G-AISI12(Cu) - Cooperalloys - - - - CW021A Cu-HCP 20.070 - - - CW121A Cu-HCP 20.070 - - - CW141N Cu2n39Pb3 20.401 - - - Brass - - - - - C493K Cu5n7Zn4Pb7-C 21.090 - - - Heat resistant steel - - - - - 1.4724 X10CrAIS18 X10 CrAI 13 - - - - 1.4724 X10CrAIS18 X10 CrAI 13 - - - - 1.4724 X10CrAIS18 X10 CrAI 13 - - - - 1.4724 X10CrAIS18 X10 CrAI 13 - - - - 1.4724 X10CrAIS18 X10 CrAI 12 - - - -	14	EN AW-7050	AlZn6CuMgZr		-	-
Cooperalloys Control CW021A CuHCP 20.070 - - CW352K CuSn6 21.020 - - Brass - - - - CW452K CuSn6 21.020 - - Brass - - - - CV451A CuZn39Pb3 20.401 - - Brass - - - - CC493K CuSn7Zn4Pb7-C 21.090 - - Heat resistant steel - - - 1.4724 X10CrAIS18 X10 CrAI 18 - - 1.4762 X10CrAIS125 X10 CrAI 24 - - Heat resistant steel with ≥ 2,5% Ni - 16Cr20Ni14512; S18240 X15Cr24Ni13 1.4848 K4CONISI25 20 - Z6400r2SNi20; S1008 10/Cr25Ni18 1.4848 GX40NICrSINb38-19 - Z6400r2SNi20S; S1008 - 1.4849 GX40NICrSINb38-19 - Cr		EN AW-7075	AlZn5,5MgCu	34.364	-	-
CW021A Cu-HCP 20.070 - - CW452X Cu5n6 21.020 - - Brass - - - CW014N Cu2n39Pb3 20.401 - - Bronze - - - - CC493K Cu5n7Zn4Pb7-C 21.090 - - 1.4724 X10CrAIS13 X 10 CrAI 13 - - 1.4742 X10CrAIS18 X 10 CrAI 18 - - 1.4762 X10CrAIS25 X 10 CrAI 24 - - 1.4762 X10CrAIS25 X 10 CrAI 24 - - 1.4828 X15CrNIS120-12 - 16Cr20N14512; S38240 X15Cr24N113 1.4828 X15CrNIS120-12 - 12Cr4Ni25; S38240 X15Cr24N113 1.4848 GX40NICrSIN538-19 - C53952 - 1.4849 GX40NICrSIN532-20 - C53952 - 1.4848 K2CNIN18-10 X12 NICrSI 35 16 12Cr16NI35; S33010 -<		EN AC-47000	EN AC-Al Si12(Cu)	32.583	G-AlSi12(Cu)	-
CW021A Cu-HCP 20.070 - - CW452X Cu5n6 21.020 - - Brass - - - CW014N Cu2n39Pb3 20.401 - - Bronze - - - - CC493K Cu5n7Zn4Pb7-C 21.090 - - 1.4724 X10CrAIS13 X 10 CrAI 13 - - 1.4742 X10CrAIS18 X 10 CrAI 18 - - 1.4762 X10CrAIS25 X 10 CrAI 24 - - 1.4762 X10CrAIS25 X 10 CrAI 24 - - 1.4828 X15CrNIS120-12 - 16Cr20N14512; S38240 X15Cr24N113 1.4828 X15CrNIS120-12 - 12Cr4Ni25; S38240 X15Cr24N113 1.4848 GX40NICrSIN538-19 - C53952 - 1.4849 GX40NICrSIN532-20 - C53952 - 1.4848 K2CNIN18-10 X12 NICrSI 35 16 12Cr16NI35; S33010 -<		Cooper alloys				
CW452K CuSné 21.020 - - Brass - - - CW614N CuZn39Pb3 20.401 - - Bronze - - - - CC493K CuSn7Zn4Pb7-C 21.090 - - Heat resistant steel - - - 1.4724 X10CrAIS113 X 10 CrAI 13 - - 1.4742 X10CrAIS12S X 10 CrAI 24 - - Heat resistant steel with ≥ 2,5% Ni - - - - 1.4762 X10CrAIS12S X 10 CrAI 24 - - - 1.4828 X15CrVIS120-12 - 16Cr20N14512; S38240 X15Cr24N113 1.4848 GX40CrNIS125-20 - ZG400:387175; S33010 - 1.4848 GX40CrSi135-16 X 12 NICrSi 36 16 12Cr16Ni35; S33010 - 1.4848 GX40NICrSi135-16 X 12 CrNIT 132 20 NS 112; H01120 - 1.4876 X10NICrAIT 32 20 NS 112;			Cu-HCP	20.070	-	_
Brass CWG14N CuZn39Pb3 20.401 - - Bronze - - - - - CC493K CuSn7Zn4Pb7-C 21.090 - - - 1.4724 X10CrAIS113 X 10 CrAI 13 - - - 1.4724 X10CrAIS12S X 10 CrAI 18 - - - 1.4742 X10CrAIS2S X 10 CrAI 24 - - - Heat resistant steel with > 2,5% Ni - - - - 1.4828 X15CrNIS20-12 - 16Cr20N114Si2; S38240 X15Cr24N113 1.4848 GX40CrNIS125-20 - ZG440Cr25N120; S31008 10Cr25N118 1.4848 GX40NICrSINb38-19 - CS3952 - - 1.4844 X12NICrSIN516 X 12 NICIS13 20 NS 112; H0120 - - 1.4878 X8CrNIT18-10 X10 NiCrAIT132 20 NS 112; H0120 - - 1.4878 X2CrMV12-1 X21CrMoV1V12-1 21Cr12MoV; S46020 <					_	_
CW614N CuZn39Pb3 20.401 - - Bronze - - - CC493K CuSn7Zn4Pb7-C 21.090 - - Heat resistant steel - - - 1.4724 X10CrAlSi13 X 10 CrAl 13 - - 1.4724 X10CrAlSi13 X 10 CrAl 18 - - 1.4762 X10CrAlSi25 X 10 CrAl 18 - - 1.4762 X10CrAlSi25 X 10 CrAl 24 - - Heat resistant steel with 2.25% Ni - 16Cr20Ni14Si2; 538240 X15Cr24Ni13 1.4845 X8CrNiSi20-12 - 16Cr20Ni14Si2; 538240 X15Cr24Ni13 1.4845 X8CrNiSi25-20 - 2C6400Ri38Cr19Si2ND1; - 1.4848 GX40NiCr5iNb38-19 - C53952 - - 1.4848 K3CrNiTi32-1 X 10 NiCrAlTi32 20 NS 112; S32160 - 1.4878 X8CrNiTi18-10 X12 CrNiTi 18 9 1c18Ni9Ti; S32160 - 1.4923 X22CrMo			cuono	21.020		
Bronze - CC493K CuSn7Zn4Pb7-C 21.090 - - Heat resistant Steel - - 1.4724 X10CrAlSi13 X 10 CrAl 13 - - 1.4742 X10CrAlSi13 X 10 CrAl 13 - - 1.4742 X10CrAlSi25 X 10 CrAl 13 - - 1.4762 X10CrAlSi25 X 10 CrAl 24 - - Heat resistant Steel - - - - 1.4762 X10CrAlSi25 X 10 CrAl 24 - - Heat resistant Steel with = 2,5% Ni - 16Cr20Ni145/2; S38240 X15Cr24Ni13 1.4828 X15CrNiS20-12 - 7C40Cr25Ni20Si2; C53901 - 1.4845 X8CrNiS25-20 - 7C40Cr25Ni20Si2; C53901 - 1.4847 K3CrNiS25-16 X 12 NiCrSi36 16 12Cr16Ni35; S33010 - 1.4848 GX40NiCrSiNb38-19 - CS3952 - - 1.4848 X8CrNiT18-10 X 12 CrNiTi 12 20 NS 112; H01120			Cu7=20Db2	20.401		
CC493K CuSn7Zn4Pb7-C 21.090 - - Heat resistant steel - - - 1.4724 X10CrAISi13 X10 CrAI 13 - - 1.4724 X10CrAISi13 X10 CrAI 18 - - 1.4742 X10CrAISi25 X10 CrAI 24 - - 1.4762 X10CrAISi25 X10 CrAI 24 - - Heat resistant steel with ≥ 2,5% Ni - - - - 1.4828 X15CrNIS20-12 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4845 X8CrNI25-21 X12 CrNi 25 21 0Cr25Ni20; S31008 10Cr25Ni18 1.4848 GX40NiCrSiNb38-19 - C53952 - 1.4876 X10NiCrAITi32-21 X10 NiCrAITi 32 20 NS 112; H01120 - 1.4876 X10NiCrAITi32-21 X10 NiCrAITi 32 20 NS 112; H01120 - 1.4878 X8CrNITI8-10 X6CrNIT8-11 0TCr18Ni75, S33010 - 1.4878 X2CrMoV12-1 X2CrMoV12-1 X2Cr12MoV3 X0409 <td< td=""><td></td><td></td><td>Cu2N39PD3</td><td>20.401</td><td>-</td><td>-</td></td<>			Cu2N39PD3	20.401	-	-
Heat resistant steel 1.4724 X10CrAISi13 X10 CrAI 13 - - 1.4724 X10CrAISi13 X10 CrAI 18 - - 1.4724 X10CrAISi125 X10 CrAI 18 - - 1.4762 X10CrAISi25 X10 CrAI 24 - - Heat resistant steel with ≥ 2,5% Ni - - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4828 X15CrNiSi20-12 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4848 GX40CrNiSi25-20 - Z640Cr25Ni20; S31008 10Cr25Ni18 1.4849 GX40NiCrSiNb38-19 - C53952 - 1.4864 X12NiCr5i35-16 X12 NiCr3i 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAITi32-21 X10 NiCrAITi 32 20 NS 112; H01120 - 1.4876 X10CrAINI8-10 X12 CrNITI 18 9 TCr18NI9TI; S32160 - 1.4923 X22CrMoV12-1 X21CrMoNIV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4924 X6CrNI18-10 X6CrNIT8-11 07Cr19Ni10; S3						
1.4724 X10CrAlSi13 X 10 CrAl 13 - - 1.4742 X10CrAlSi18 X 10 CrAl 18 - - 1.4762 X10CrAlSi25 X 10 CrAl 24 - - 1.4762 X10CrAlSi25 X 10 CrAl 24 - - 1.4762 X10CrAlSi2012 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4828 X15CrNiSi2012 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4848 GX40CrNiSi25-20 - ZG40Cr25Ni20Si2; C53901 - 1.4849 GX40NiCrSiNb38-19 - ZG40Ni38Cr19Si2Nb1; - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4878 X8CrNiTi18-10 X 12 CrNiTi 18 9 1Cr18Ni9Ti; S32160 - 1.4973 X22CrMoV12-1 X21Cr10NNiV12-1 21Cr12MoV; S46020 X21Cr12MoIV3 1.4974 X6CrNiT8-10 X6CrNiT8-10 X6CrNiT8-10 - 1.4973 X22CrMoV12-1 X21Cr10MoNiV12-1 21Cr12MoV; S46020 X21Cr12MoIV3 <td></td> <td>CC493K</td> <td>CuSn7Zn4Pb7-C</td> <td>21.090</td> <td>-</td> <td>-</td>		CC493K	CuSn7Zn4Pb7-C	21.090	-	-
1.4724 X10CrAlSi13 X 10 CrAl 13 - - 1.4742 X10CrAlSi18 X 10 CrAl 18 - - 1.4762 X10CrAlSi25 X 10 CrAl 24 - - 1.4762 X10CrAlSi25 X 10 CrAl 24 - - 1.4762 X10CrAlSi2012 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4828 X15CrNiSi2012 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4848 GX40CrNiSi25-20 - ZG40Cr25Ni20Si2; C53901 - 1.4849 GX40NiCrSiNb38-19 - ZG40Ni38Cr19Si2Nb1; - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4878 X8CrNiTi18-10 X 12 CrNiTi 18 9 1Cr18Ni9Ti; S32160 - 1.4973 X22CrMoV12-1 X21Cr10NNiV12-1 21Cr12MoV; S46020 X21Cr12MoIV3 1.4974 X6CrNiT8-10 X6CrNiT8-10 X6CrNiT8-10 - 1.4973 X22CrMoV12-1 X21Cr10MoNiV12-1 21Cr12MoV; S46020 X21Cr12MoIV3 <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	_					
1.4742 X10CrAISI18 X 10 CrAI 18 - - 1.4762 X10CrAISI25 X10 CrAI 24 - - Heat resistant steel with ≥ 2,5% Ni - - - 1.4828 X15CrNiSi20-12 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4845 K8CrNi25-21 X 12 CrNi 25 21 0Cr25Ni20; S31008 10Cr25Ni18 1.4849 GX40NiCrSiNb38-19 - ZG40Cr25Ni20Si2; C53901 - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAIIT32-21 X 10 NiCrAIT 32 20 NS 112; H01120 - 1.4876 X10NiCrAIT 32 20 NS 112; H01120 - - 1.4878 X8CrNITB-10 X 12 CrNIT 13 20 NS 112; H01120 - 1.4878 X8CrNITB-10 X 12 CrNIT 13 20 NS 112; H01120 - 1.4923 X 22 CrMoV12-1 X 21 CrNoNiV12-1 21 Cr12MoV; S46020 X 21 Cr12MoIV3 1.4948 X 6CrNIT8-10 X 6CrNIT8-11 07 Cr19Ni10; S30409 7 Cr18Ni10H						
1.4762 X10 CrAlSi25 X 10 CrAl 24 - - Heat resistant steel with ≥ 2,5% Ni . . 1.4828 X15Cr/NiSi20-12 - 16Cr20Ni145i2; S38240 X15Cr24Ni13 1.4828 X15Cr/NiSi20-12 - 0Cr25Ni20; S31008 10Cr25Ni18 1.4845 X8CrNiSi25-20 - ZG40Cr25Ni20; S31008 10Cr25Ni18 1.4849 GX40NiCrSiNb38-19 - ZG40Cr25Ni20; S3010 - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAITi32-21 X 10 NiCrAITi 32 20 NS 112; H01120 - 1.4878 X8CrNiTi18-10 X 12 CrNiTi 18 9 1Cr18Ni9Ti; S32160 - 1.4878 X8CrNiTi18-10 X 12 CrNiTi 18 9 1Cr18Ni9Ti; S32160 - 1.4923 X22CrMoV12-1 X21CrMoNiV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H Ttanium and superalloys - - - - 2.4631 NiCr20TiAI - - - -		1.4724	X10CrAlSi13	X 10 CrAl 13	-	-
Heat resistant steel with ≥ 2,5% Ni 1.4828 X15CrNiSi20-12 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4828 X8CrNi25-21 X 12 CrNi 25 21 0cr25Ni20; S31008 10Cr25Ni18 1.4848 GX40CrNiSi25-20 - Z640Cr25Ni20Si2; C53901 - 1.4849 GX40NiCrSiNb38-19 - Z640Ni38Cr19Si2Nb1; C53952 - 1.4844 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAITi32-21 X 10 NiCrAITi 32 20 NS 112; H01120 - 1.4878 X8CrNiTi18-10 X 12 CrNITi 18 9 1Cr18Ni9Ti; S32160 - 1.4878 X2CrMoV12-1 X21CrMONIV12-1 21Cr12MoV; \$46020 X21Cr14Mo1V3 1.4973 X22CrMoV12-1 X21CrMONIV12-1 21Cr12MoV; \$46020 X21Cr14Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H Titanium and superalloys - - - - 2.4631 NiCr20Cr18Ti - - - 2.4632 NiCr20Cr18Ti		1.4742	X10CrAlSi18	X 10 CrAl 18	-	-
1.4828 X15CrNiSi20-12 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4845 X8CrNi25-21 X 12 CrNi 25 21 0Cr25Ni20; S31008 10Cr25Ni18 1.4848 GX40CrNiSi25-20 - Z640Cr25Ni20Si2; C53901 - 1.4849 GX40NiCrSiNb38-19 - Z640Cr25Ni20Si2; C53901 - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4878 X8CrNiTi18-10 X 12 CrNTi 18 9 1Cr18Ni9Ti; S32160 - 1.4973 X22CrMoV12-1 X21CrMONiV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H 1.4923 X22CrMoV12-1 X21CrMONIV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H 2.4631 NiCr20Cr16Ti		1.4762	X10CrAlSi25	X 10 CrAl 24	-	-
1.4828 X15CrNiSi20-12 - 16Cr20Ni14Si2; S38240 X15Cr24Ni13 1.4845 X8CrNi25-21 X 12 CrNi 25 21 0Cr25Ni20; S31008 10Cr25Ni18 1.4848 GX40CrNiSi25-20 - Z640Cr25Ni20Si2; C53901 - 1.4849 GX40NiCrSiNb38-19 - Z640Cr25Ni20Si2; C53901 - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4878 X8CrNiTi18-10 X 12 CrNTi 18 9 1Cr18Ni9Ti; S32160 - 1.4973 X22CrMoV12-1 X21CrMONiV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H 1.4923 X22CrMoV12-1 X21CrMONIV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H 2.4631 NiCr20Cr16Ti		Heat resistant	steel with > 2.5% Ni			
1.4845 X8CrNi25-21 X 12 CrNi 25 21 OCr25Ni20; S31008 10Cr25Ni18 1.4848 GX40CrNi5i25-20 - ZG40Cr25Ni20Si2; C53901 - 1.4849 GX40NiCrSiNb38-19 - ZG40Ni38Cr19Si25.20 - 1.4844 GX40NiCrSiNb38-19 - ZG40Ni38Cr19Si2Nb1; C53952 - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4876 X8CrNiTi8-10 X 12 CrNiTi 18 9 1Cr18Ni9Ti; S32160 - High heat resisting material - - - - 1.4923 X22CrMoV12-1 X21CrNoNiV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNiT8-10 X6CrNiT8-11 07Cr19Ni10; S30409 7Cr18Ni10H Titanium and superalloys - - - - 2.4631 NiCr20Cn18Ti - - - 2.4632 NiCr20Cn8Ti - - - 2.4634 <td< td=""><td></td><td></td><td></td><td>-</td><td>16Cr20Ni14Si2: \$38240</td><td>X15Cr24Ni13</td></td<>				-	16Cr20Ni14Si2: \$38240	X15Cr24Ni13
1.4848 GX40CrNiSi25-20 - ZG40Cr25Ni2OSi2; C53901 - 1.4849 GX40NiCrSiNb38-19 - ZG40Ni38Cr19Si2Nb1; C53952 - 1.4849 GX40NiCrSiNb38-19 - ZG40Ni38Cr19Si2Nb1; C53952 - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4876 X8CrNiTi810 X 12 CrNiTi 18 9 1C18Ni9T; S32160 - High heat resisting material - - - - 1.4923 X22CrMoV12-1 X21CrMoNiV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNiT8-10 X6CrNiT8-11 07Cr19Ni10; S30409 7Cr18Ni10H Titanium and superalloys - - - - 2.4631 NiGr20TiAl - - - 2.4632 NiCr20Co18Ti - - - 2.4634 NiCo20Cr15MoAITi - - - 3.7025 Ti 1 -				V 12 CrNi 25 21		
1.4849 GX40NiCr5iNb38-19 - ZG40Ni38Cr19Si2Nb1; C53952 - 1.4864 X12NiCr5i35-16 X 12 NiCr5i 36 16 12Cr10Ni35; S33010 - 1.4876 X10NiCrAITi32-21 X 10 NiCrAITi 32 20 NS 112; H01120 - 1.4876 X8CrNiTi18-10 X 12 CrNiTi 18 9 12Cr10Ni35; S32160 - 1.4876 X8CrNiTi18-10 X 12 CrNiTi 18 9 12Cr12NoV; S46020 X21Cr12Mo1V3 1.4878 X8CrNiTi18-10 X6CrNiT8-11 07Cr19Ni10; S30409 7Cr18Ni10H 1.4948 X6CrNiT8-10 X6CrNiT8-11 07Cr19Ni10; S30409 7Cr18Ni10H Titanium and superalloys - - - - 2.4610 NiMo16Cr16Ti - NS 335; H03350 - 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Cr18Ti - - - 2.4634 NiCo20Cr15MoAITi - - - 3.7025 Ti 1 - - - - 3.7035 Ti 2 -				X 12 CHN125 21		10012310110
1.4849 GX40NiCrSiN538-19 - C53952 - 1.4864 X12NiCrSi35-16 X 12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAITi32-21 X 10 NiCrAITi 32 20 NS 112; H01120 - 1.4876 X10NiCrAITi32-21 X 10 NiCrAITi 32 20 NS 112; H01120 - 1.4878 X8CrNiT18-10 X 12 CrNiTi 18 9 1Cr18Ni9Ti; S32160 - 1.4923 X22CrMoV12-1 X21CrMONIV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H Titanium and superalloys Z 46610 NiMo16Cr16Ti - NS 335; H03350 - 2.4631 NiCr20Cr18Ti - - - - 2.4632 NiCr20Cr18Ti - - - - - 2.4634 NiCo20Cr15MoAITi - - - - - - - - - - - - - - - -<		1.4848	GX40CrNISI25-20	-		-
1.4864 X12NiCrSi35-16 X12 NiCrSi 36 16 12Cr16Ni35; S33010 - 1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4876 X8CrNiTi18-10 X 12 CrNITi 18 9 1Cr18Ni9Ti; S32160 - High heat resisting material - - - - 1.4923 X22CrMoV12-1 X21CrMoNiV12-1 21Cr12MoV; \$46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H Titanium and superalloys 2.4610 Nik0r20TiAl - - 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Co18Ti - - - - 2.4634 NiCo20Cr15MoAlTi - - - - - 3.7025 Ti 1 - <		1.4849	GX40NiCrSiNb38-19	-		-
1.4876 X10NiCrAlTi32-21 X 10 NiCrAlTi 32 20 NS 112; H01120 - 1.4878 X8CrNiTi18-10 X 12 CrNiTi 18 9 1Cr18Ni9Ti; S32160 - High heat resisting material - - - 1.4923 X22CrMoV12-1 X21CrMoNiV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4924 X2CrMoV12-1 X21CrMoNiV12-1 21Cr12MoV; S46020 X21Cr12Mo1V3 1.4928 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; S30409 7Cr18Ni10H Titanium and superalloys - - - - 2.4610 NiM016Cr16Ti - NS 335; H03350 - 2.4631 NiCr20Co18Ti - - - 2.4632 NiCr20Co18Ti - - - 2.4643 NiCo20Cr15MoAlTi - - - 2.4668 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - - 3.7055 Ti 2 - - -		1 40/4	MANIC COF 1/	V 40 N/C C 27 47		
1.4878 X8CrNiTi18-10 X 12 CrNiTi 18 9 1Cr18NiPTi; S32160 - High heat resisting material						-
High heat resisting material 1.4923 X22CrMoV12-1 X21CrMoNiV12-1 21Cr12MoV; \$46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; \$30409 7Cr18Ni10H Titanium and superalloys 2.4610 NiMo16Cr16Ti - NS 335; H03350 - 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Co18Ti - - - 2.4634 NiCo20Cr15MoAlTi - - - 2.4668 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - - 3.7035 Ti 2 - - - - 3.7055 Ti 3 - - - - 3.7065 Ti 4 - - - - 3.7164 Ti 6 Al4 V - - - -						-
1.4923 X22CrMoV12-1 X21CrMoNiV12-1 21Cr12MoV; \$46020 X21Cr12Mo1V3 1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10; \$30409 7Cr18Ni10H Titanium and superalloys 2.4610 NiMo16Cr16Ti - NS 335; H03350 - 2.4631 NiCr20TiAl - - - - 2.4632 NiCr20Cr18Ti - - - - 2.4634 NiCo20Cr15MoAlTi - - - - 2.4638 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - - 3.7025 Ti 1 - - - - - 3.7035 Ti 2 - - - - - 3.7065 Ti 4 - - - - - - 3.7065 Ti 4 - - - - - - - - - - - - - - - - <td></td> <td>1.4878</td> <td>X8CrNiTi18-10</td> <td>X 12 CrNiTi 18 9</td> <td>1Cr18Ni9Ti; S32160</td> <td>-</td>		1.4878	X8CrNiTi18-10	X 12 CrNiTi 18 9	1Cr18Ni9Ti; S32160	-
1.4948 X6CrNi18-10 X6CrNi18-11 07Cr19Ni10, S30409 7Cr18Ni10H Titanium and superalloys 2.4610 NiM016Cr16Ti - NS 335; H03350 - 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Co18Ti - - - 2.4634 NICo20Cr15MoAITi - - - 2.4668 NICr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - - 3.7035 Ti 2 - - - - 3.7055 Ti 3 - - - - 3.7065 Ti 4 - - - - 3.7164 Ti 6 Al4 V - - - -		High heat resis	ting material			
Titanium and superalloys 2.4610 NiMo16Cr16Ti - NS 335; H03350 - 2.4610 NiMo16Cr16Ti - NS 335; H03350 - 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Co18Ti - - - 2.4634 NiCo20Cr15MoAlTi - - - 2.4668 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - - 3.7035 Ti 2 - - - - 3.7055 Ti 3 - - - - 3.7065 Ti 4 - - - - 3.7065 Ti 4 - - - - 3.7164 Ti 6 Al4 V - - - -		1.4923	X22CrMoV12-1	X21CrMoNiV12-1	21Cr12MoV; \$46020	X21Cr12Mo1V3
Titanium and superalloys 2.4610 NiMo16Cr16Ti - NS 335; H03350 - 2.4610 NiMo16Cr16Ti - NS 335; H03350 - 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Co18Ti - - - 2.4634 NiCr20Co18Ti - - - 2.4648 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - - 3.7025 Ti 1 - - - - 3.7035 Ti 2 - - - - 3.7055 Ti 3 - - - - 3.7065 Ti 4 - - - - 3.7065 Ti 4 - - - - 3.7064 Ti 6 Al 4 V - - - -		1.4948	X6CrNi18-10	X6CrNi18-11	07Cr19Ni10; \$30409	7Cr18Ni10H
2.4610 NiMo16Cr16Ti - NS 335; H03350 - S 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Co18Ti - - - - 2.4634 NiCo20Cr15MoAlTi - - - - 2.4638 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - - 3.7035 Ti 2 - - - - 3.7055 Ti 3 - - - - 3.7065 Ti 4 - - - - 3.7164 Ti 6 Al 4 V - - - -		Titanium and s	uperallovs			
S 2.4631 NiCr20TiAl - - - 2.4632 NiCr20Co18Ti - - - - 2.4634 NiCo20Cr15MoAlTi - - - - 2.4634 NiCo20Cr15MoAlTi - - - - 2.4648 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - 3.7035 Ti 2 - - - 3.7055 Ti 3 - - - 3.7065 Ti 4 - - - 3.7164 Ti 6 Al 4 V - - -				-	NS 335- H03350	_
2.4632 NiCr20Co18Ti - - - 2.4634 NiCo20Cr15MoAlTi - - - 2.4634 NiCo20Cr15MoAlTi - - - 2.4668 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - - 3.7035 Ti 2 - - - - 3.7055 Ti 3 - - - - 3.7065 Ti 4 - - - - 3.7164 Ti 6 Al4 V - - - -				_	_	_
2.4632 NiCo200111 - - - 2.4634 NiCo20Cr15MoAlTi - - - 2.4668 NiCr0Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - 3.7035 Ti 2 - - - 3.7055 Ti 3 - - - 3.7065 Ti 4 - - - 3.7164 Ti 6 Al 4 V - - -	S					
2.4668 NiCr19Fe19Nb5Mo3 Inconel 718 GH 4169; H41690 - 3.7025 Ti 1 - - - 3.7035 Ti 2 - - - 3.7055 Ti 3 - - - 3.7065 Ti 4 - - - 3.7164 Ti 6 Al 4 V - - -						
3.7025 Ti 1 - - - 3.7035 Ti 2 - - - 3.7055 Ti 3 - - - 3.7065 Ti 4 - - - 3.7164 Ti 6 Al 4 V - - -				-	-	-
3.7035 Ti 2 - - - 3.7055 Ti 3 - - - 3.7065 Ti 4 - - - 3.7164 Ti 6 Al 4 V - - -				Inconel / 18	GH 4169; H41690	-
3.7055 Ti 3 - - - 3.7065 Ti 4 - - - 3.7164 Ti 6 Al 4 V - - -				-	-	-
3.7065 Ti 4 - - - 3.7164 Ti 6 Al 4 V - - -			Ti 2	-	-	-
3.7164 Ti 6 Al 4 V		3.7055	Ti 3	-	-	-
		3.7065	Ti 4	-	-	-
3.7115 Ti 5 Al 2.5 Sn		3.7164	Ti 6 Al 4 V	-	-	-
		3.7115	Ti 5 Al 2.5 Sn	-	-	-

JP	RU	USA	Strength / Hardness	Machinability
	cal engineering and aerospace		ottongti / haraness	maennuonny
Aluminum anoys for mechani	-	5005	100-155 MPa	+
		5052	160-235 MPa	+
-	-	5083	255-275 MPa	
-	-		120-200 MPa	+
-	-	6060		++
-	-	6061	195-315 MPa	++
-	-	6082	195-350 MPa	++
-	-	2017	375-410 MPa	++
-	-	2024	410-470 MPa	++
-	-	7010	430-500 MPa	++
-	-	7050	430-500 MPa	++
-	-	7075	420-530 MPa	++
-	-	-	150-170 MPa	+
Cooperalloys				
-	-	C10800	200-360 MPa	-
C5191	-	C51900	350-720 MPa	-
Brass				
C3603	-	C38500	360-550 MPa	++
Bronze				
-	-	C93200	230-260 MPa	++
Heat resistant steel				
-	_	_	450-650 MPa	
SUH 21	15Ch18SJu		500-700 MPa	
SUH 446	1361110350	S44600	520-720 MPa	
Heat resistant steel with $\geq 2_r$	- E0/ Ni:	344000	JZU-7 ZU IVIF d	
		200	E00.7E0.MDa	
SUS 309TB	20Ch20N14S2	309	500-750 MPa	•
SUS 310TB	10Ch23N18	310 H	500-700 MPa	•
SCH 22X	-	J94224	440-640 MPa	•
SCH 20XNb	-	N08005	400-600 MPa	
SUH 330	-	N08330	550-750 MPa	-
NCF 800 TB	-	N08800	450-680 MPa	•
SUS 321HTB	-	321 H	500-720 MPa	•
High heat resisting material				
-	-	-	800-950 MPa	•
SUS 302	-	304 H	500-700 MPa	-
Titanium and superalloys				
-	-	Hastelloy C-4	≤ 690 MPa	-
NCF 80A	-	Nimonic 80A; N07080	≤ 980 MPa	
-	-	Nimonic 90; N07090	≤ 1200 MPa	
-	-	Nimonic 105; N13021	≤ 980 MPa	
NCF 718	-	Inconel 718; N07718	≤ 1230 MPa	
-	-	Grade 1		
-	-	Grade 2	345 MPa	
_	-	Grade 3	441 MPa	
_	_	Grade 4	539 MPa	
_		Grade 5	895 MPa	
_	_	Grade 6	686 MPa	
		Gidue D		

Note: The tensile strength (Rm) and hardness (HB) specifications relate in the main to an annealed or non-tempered material state. The machinability specifications are based on the combined heat value

Surface finish comparison chart

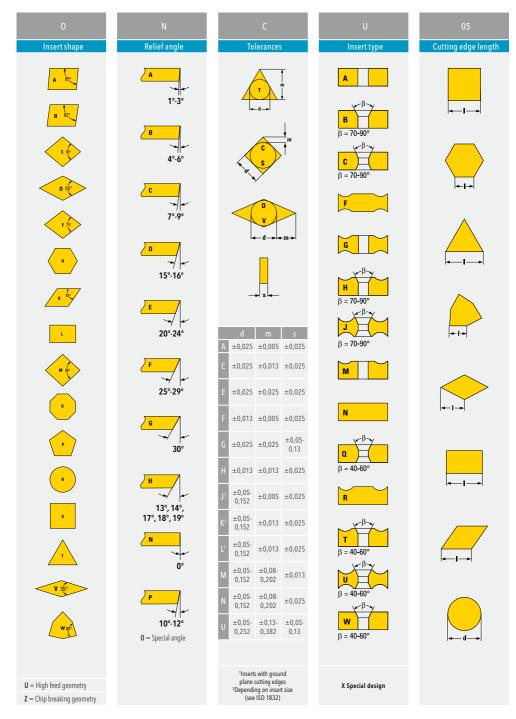
Surface symbol (DIN 3141)	Roughness grade Nr.	Average surface roughness R _a in µm	Average roughness depth R, in µm	Roughness (USA) CLA in µin	Roughness (France) R
	N 12	50	180220	2000	-
\bigtriangledown	N 12	25	90110	1000	
\bigtriangledown	N 10	13	4657	500	- R 100
V	N IU	13	4037	500	R IUU
ອ					
Koug hing					
Kor					
_					
		1.2	00.00	050	5.40
$\nabla \nabla$	N 9	6,3	2332	250	R 40
$\nabla \nabla$	N 8	3	1216	125	R 25/R 16
$\nabla \nabla$	N 7	2	5,908,00	63	R 10
ð					
Finishing					
Ē					
$\nabla \nabla \nabla$	N 6	0,8	3,004,80	32	R 6,3
$\nabla \nabla \nabla$	N 5	0,4	1,602,80	16	R 3,2/R 2
$\nabla \nabla \nabla$	N 4	0,2	1,001,80	8	R 1,25
bui					
Time timishing					
Ē					
$\nabla \nabla \nabla \nabla$	N 3	0,1	0,801,10	4	R 0,8/R 0,5
$\nabla \nabla \nabla \nabla$	N 2	0,05	0,450,60	2	-
$\nabla \nabla \nabla \nabla$	N 1	0,025	0,220,30	1	-
			,		
ĥ					
lishi					
Micro tinishing					
licre					
2					

Hardness comparison chart

tensile strength Rm MPa	Vickers hardness HV	Brinell hardness HB	Rockwell hardness HRC	tensile strength Rm MPa	Vickers hardness HV	Brinell hardness HB	Rockwell hardness HRC
255	80	76	-	1190	370	352	37,7
270	85	81	-	1220	380	361	38,8
285	90	86	-	1255	390	371	39,8
305	95	90	-	1290	400	380	40,8
320	100	95	-	1320	410	390	41,8
335	105	100	-	1350	420	399	42,7
350	110	105	-	1385	430	409	43,6
370	115	109	-	1420	440	418	44,5
385	120	114	-	1455	450	428	45,3
400	125	119	-	1485	460	437	46,1
415	130	124	-	1520	470	447	46,9
430	135	128	-	1555	480	456	47,7
450	140	133	-	1595	490	466	48,4
465	145	138	_	1630	500	475	49,1
480	150	143	_	1665	510	485	49,8
495	155	143	-	1700	520	494	50,5
510	160	152	_	1740	530	504	51,1
530	165	152	_	1775	540	513	51,7
545	170	162	-	1810	550	523	52,3
560	175	166	-	1845	560	532	53
	175	171	_		570	532	
575			-	1880			53,6
595	185	176	-	1920	580	551	54,1
610	190	181	-	1955	590	561	54,7
625	195	185	-	1995	600	570	55,2
640	200	190	-	2030	610	580	55,7
660	205	195	-	2070	620	589	56,3
675	210	199	-	2105	630	599	56,8
690	215	204	-	2145	640	608	57,3
705	220	209	-	2180	650	618	57,8
720	225	214	-	-	660	-	58,3
740	230	219	-	-	670	-	58,8
755	235	223	-	-	680	-	59,2
770	240	228	20,3	-	690	-	59,7
785	245	233	21,3	-	700	-	60,1
800	250	238	22,2	-	720	-	61
820	255	242	23,1	-	740	-	61,8
835	260	247	24,0	-	760	-	62,5
850	265	252	24,8	-	780	-	63,3
865	270	257	25,6	-	800	-	64
880	275	261	26,4	-	820	-	64,7
900	280	266	27,1	-	840	-	65,3
915	285	271	27,8	-	860	-	65,9
930	290	276	28,5	-	880	-	66,4
950	295	280	29,2	-	900	-	67
965	300	285	29,8	-	920	-	67,5
995	310	295	31,0	-	940	-	68
1030	320	304	32,2				
1060	330	314	33,3				
1095	340	323	34,4				
1125	350	333	35,5				
1155	360	342	36,6				

Grades - Coatings

	Grade	Coating	ISO-Group	Milling	Solid carbide	Application and Material
	IN05S	-	N10-N25	•	•	for machining of AL-alloys and non-ferrous materials
oide	IN10K		K10-K25	•		for finish machining of cast iron
Carbide	INTUK	-	N10-N25	• •	•	for finish machining of AL-alloys and non-ferrous materials
	IN15K	-	N15-N30	•		for machining of AL-alloys and non-ferrous materials
			P10-P20	•		for milling of alloyed steel
	IN2004	TiAIN	K10-K25	•		for medium machining of gray cast iron-especially CGI
			H05-H15	•		for finish machining of hardened steel at medium up to high cutting speed
			P15-P30	• •	•	for general machining of steel at high cutting speed
	IN2005	TiAIN	M15-M35	• •	•	for general machining of stainless steel
			K20-K40	• •	•	for general machining of cast iron
			S05-S20	•	•	for general milling of heat resistant alloys and titanium also for wet machining
	IN2006	TiAIN	P05-P20	٠	•	for finish machining at high cutting speed and low cutting depth
		T : 4 (b)	H05-H20	•	•	for finish machining of hardened steel up to 63 HRC
	IN2010	TiAIN	K10-K30	• •	,	for finish machining and drilling of cast iron
	INDODE	TIAIN	P25-P50	•		for high feed machining of steel
	IN2035	TiAIN	M20-M40	•		for machining of stainless and austenitic steel and heat resistant alloys
	IN2040	TiAIN	S20-S30 P15-P35	•		mainly for milling of materials of machining group ,S'
	1112040	HAIN	P 15-P35 P05-P25	•		for finish machining of unalloyed steel and tempered steel for milling of steel at medium up to high cutting speed
	IN2504	TiAIN / TiN	H05-H25	•		for milling of hardened steel at medium up to high cutting speed
			P15-P30	•		for semi-finish and rough machining of steel with high strength
	IN2505	TiAIN / TiN	M15-M35	• •		for general machining of stainless steel
	1112303	HAIN / HA	S05-S20		,	for general machining of heat resistant alloys
	IN2510	TiAIN / TiN	K10-K30	•		for general machining of gray cast and non-ferrous metal
			P20-P35	•		for milling of steel with high strength at medium cutting speed
ed	IN2515	TiAIN / TiN	K30-K50	•		for general machining of gray cast and nodular cast iron
PVD coated			P20-P40	• •		tough grade for general machining of steel
DVD			M15-M30	• •	,	for general machining of stainless steel
	IN2530	0 TiAIN / TiN	K20-K40	•		for general machining of cast iron
			S15-S30	• •	•	for general machining of heat resistant alloys
			P25-P50	•		for high feed machining of steels
	IN2535	TiAIN / TiN	M20-M40	•		for machining stainless and austenitic steel and heat-resistant alloys
			S20-S30	•		preferably for the milling of materials of the cutting group "S"
	IN2540	TiAIN / TiN	P15-P35	•		for semi-finish and rough machining of unalloyed steel and tempered steel
			P15-P30	•		for general machining of steel
	IN4005	TiAIN / Al ₂ O ₂	M15-M35	•		for general machining of stainless steel
	114005	11AIN / Al ₂ O ₃	K20-K40	•		for general machining of cast iron
			S05-S20	•		for general machining of heat resistant alloys and titanium
	IN4005	TiAIN / Al ₂ O ₃	K10-K30	•		for general machining of cast iron
	IN4015	TiAIN / Al ₂ O ₂	P20-P35	٠		for milling of steel with high strength at medium cutting speed
			K30-K50	٠		for general milling of gray cast and nodular cast iron
			P20-P40	•		tough grade for general machining of steel
	IN4030	TiAIN / Al ₂ O ₃	M15-M30	•		for general machining of stainless and austenitic steel
			S15-S25	•		for general machining of heat resistant alloys
	114025	TAIN / AL C	P25-P50	•		for high feed machining of steel
	IN4035	TiAIN / Al ₂ O ₃	M20-M40	•		for machining of stainless steel, austenitic steel and heat resistant alloys
	IN4040		S20-S30 P15-P30	•		mainly for milling of materials of machining group ,S'
	1114040	TiAIN / Al ₂ O ₃	F13-F30	•		for medium machining of unalloyed and tempered steel



	Grade	Coating	ISO-Group	Milling	Drilling	Solid carbide	Application and Material
	IN6505	TiCN / Al ₂ O ₃ / TiN	P10-P25		٠		for drilling of steel, used only at peripheral insert of QuadTwist drill
	IN6520	TiCN / Al ₂ O ₃ / TiN	P10-P40		٠		for drilling of steel, used only at peripheral insert of QuadDrill+ drill
			M20-M45	٠			for dry machining of stainless steel and heat resistant alloys at high Vc
g	1100000	TiCN / Al ₂ O ₃ / TiN	S15-S30	٠			primarily for milling of materials of machining group ,S'
oate			P30-P45	٠			for roughing carbon steels and alloyed steels at high Vc
CVD coated	IN6537	TiCN / Al ₂ O ₃ / TiN	M30-M45	٠			for milling stainless steels at medium cutting speed
5			K30-K45	٠			for rough milling of gray cast and nodular cast iron
			P20-P40	٠			for high feed machining of steel
	IN7035	TiCN / Al ₂ O ₃ / TiN	M20-M35	٠			for machining of stainless and austenitic steel and heat resistant alloys
			S15-S30	٠			primarily for milling of materials of machining group ,S'
Cermet	IN0560	TiN	P05-P15	•			for finish machining of steel at medium up to high cutting speed
Cer	1110300	IIN	M05-M15	•			for finish machining of stainless steel at medium up to high cutting speed
_							
Ceramic	IN70N	Si ₃ N ₄	K10-K20	٠			for machining of gray cast iron at extreme high cutting speed
erai	IN75N	SiAION	K10-K20	٠		•	for machining of cast iron at extreme high cutting speed
0	IN76N	SiAION	S25-S35	٠		•	for roughing of heat resistant alloys
_				_			
CBN	IN80B	-	K05-K15	٠			for machining of surface hardened cast materials and chill cast
U	INCOD	-	H05-H15	٠			for machining of hardened steel
PCD	IN90D	-	N01-N10	•			for machining of aluminum, non-ferrous materials and graphite

Application	Grade	ISO-Group					
	IN2504	P05-P25				H05-H25	harder
	IN2006	P05-P20				H05-H20	
	IN2004	P10-P20		K10-K20		H05-H15	Т
	IN4010			K10-K30			
	IN2510			K10-K30			
	IN2005	P15-P30	M15-M35	K20-K40	S05-S20		
	IN2505	P15-P30	M15-M35		S05-S20		
	IN4040	P15-P30					
ling	IN2540	P15-P35					
Milling	IN4015	P20-P30		K30-K50			
	IN2515	P20-P30		K30-K50			
	IN4030	P20-P40	M15-M30		S15-S25		
	IN2530	P20-P40	M15-M30	K20-K40	S15-S25		
	IN6535		M20-M35		S15-S30		
	IN6537	P30-P45	M30-M45	K30-K45			
	IN7035	P20-P40	M20-M35		S15-S30		↓
	IN4035	P25-P50	M20-M40		S20-S30		
	IN2035	P25-P50	M20-M40		S20-S30		tougher
	IN2010			K10-K30			harder
бu	IN6505	P10-P25					narder
Drilling	IN6520	P10-P40					1
ā	IN2505	P20-P40	M20-M40		S05-S20		•
	IN2005	P15-P30	M15-M35	K20-K40	S05-S20		tougher
_ e q	IN2504	P05-P25				H05-H25	harder
Solid carbide	IN2006	P05-P20				H05-H20	+
Ca V	IN2005	P15-P30	M15-M35	K20-K40	S05-S20		tougher

Designation system for ISO indexable inserts

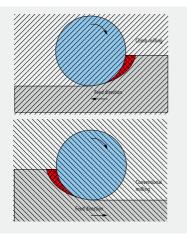
05 Insert thickness	AN Corner rounding	T Cutting edge form	N - Cutting direction	HR Internal designation
<u></u> s	2 r= 0,2	E rounded	R -	for example P = polished W = with wiper finis- hing edge HR = heat flutes
s	4 r=0,4 8 r=0,8 12 r=1,2 16 r=1,6 24 r=2,4	sharp		
s	R	chamfered		
	00 for diameters in inch measures converted into mm	s		
ţs	M0 for metric diameters	chamfered and rounded		
01 s = 1,59				
T1 s = 1,98				
02 s = 2,38				
T2 s = 2,78				
03 s = 3,18				
T3 s = 3,97	1 Bevel angle χ_r			
04 s = 4,76	A = 45°			
05 s = 5,56	D = 60°			
06 s = 6,35	E = 75°			
07 s = 7,94	$F = 85^{\circ}$ $P = 90^{\circ}$			
09 s= 9,52	$P = 90^{\circ}$ Z = others			
	P Relief angle on wiper A = 3° B = 5°			
	C = 7°			
	D = 15°			
	E = 20°			
	$F = 25^{\circ}$			
	$G = 30^{\circ}$			
	$N = 0^{\circ}$			
	P = 11°			
	Z = other relief angles			

General formulas

Cutting data calculation

Parame	ters		Parame	ters	
n:	Speed of rotation (min ⁻¹)		Vf:	Feed rate (mm/min)	
Vc:	Cutting speed		fz:	Feed per tooth (mm)	
D:	Tool diameter (mm)		Z _(eff) :	Number of teeth	
n	$=\frac{Vc}{D x \pi} x 1000$	$Vc = \frac{D \times \pi \times n}{1000}$	V	′f=n x fz x Z	$fz = \frac{Vf}{n \times Z}$

Variable	Unit	Formula	Calculation Example	
Speed of rotation:	min ^{.1}	$n = \frac{V_c x 1000}{D x \pi}$	Material:	42CrMo4 (1.7225)
Speed of rotation.		Dxπ	Cutter type:	2J1R080R00
Cutting speed:	m/min	$V_{c} = \frac{D x \pi x n}{1000}$	Insert:	BOMT130404R
cutting speed.		v _c = 1000	Tool diameter:	80 mm
Feed rate:	mm/min	$v_f = f_2 x Z_{eff} x n$	Effective number of teeth:	9
		f ¹ ₂ × ² eff × ¹¹	Depth of cut a _p :	4 mm
Feed per tooth:	mm	$f_z = \frac{V_f}{Z_{,\#} x n}$	Width of cut a _e :	50 mm
		² Z _{eff} x n	Cutting speed V _c :	200 m/min
Chip removal rate:	cm³/min	$Q = \frac{a_e x a_p x v_f}{1000}$	Feed per tooth $f_{\mbox{\tiny z}}$:	0,12 mm
		- 1000	Efficiency η:	0,80 (assumed)
Average chip thickness:	mm	$h_m = f_z x \sqrt{a_e' D}$	Calculation of speed of rotation:	$n = \frac{200 \text{ x } 1000}{80 \text{ x } \pi} = 796 \text{ min}^{-1}$
Specific cutting force:	MPa	$k_c = h_m^{-mc} x k_{c1.1}$	Calculation of feed rate:	$v_f = 0,12 \text{ x } 796 \text{ x } 9 = 859 \text{ mm/min}$
Spindle power:	kW	$P_{c} = \frac{a_{p} x a_{e} x v_{f} x k_{c}}{60 x 10^{6}}$	Calculation of chip removal rates:	$Q = \frac{4 \times 50 \times 859}{1000} = 172 \text{ cm}^3/\text{min}$
Motor power:	kW	$P_{mot} = \frac{P}{h}$	Calculation of specific cutting force:	$k_c = 0,15^{-0.24} x 1615 = 2546 MPa$
			Calculation of the required spindle power:	$P_{c} = \frac{4 \times 50 \times 859 \times 2546}{60 \times 10^{6}} = 7,3 \text{ kW}$
			Calculation of the motor power:	$P_{mot} = \frac{7.3}{0.8} = 9.1 \text{ kW}$

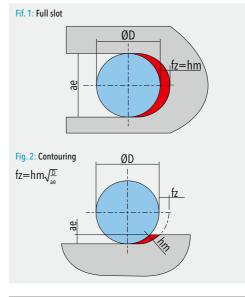


Conventional and climb milling / Average chip thickness

Conventional (upcut) and climb (downcut) milling

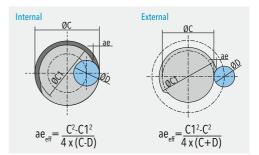
In milling processes, differentiation is made between conventional (upcut) and climb (downcut) milling. In climb milling, the cutting edges move in the same direction as the feed, in conventional milling on the other hand, the cutting edges move in the opposite direction to the feed. Generally speaking, a longer tool life and better surface finish are achieved with climb milling, as the cutting edge cuts into the material with the greatest chip thickness, without first pressing or scraping until the chip thickness, cutting forces and workpiece material allow the tool to cut, which is the case with conventional milling.

An exception to this rule are hard material crusts. Here, the cutting edge engagement in soft material that occurs in conventional milling has proven to be most beneficial, because an impact into the hard crust would quickly destroy the cutting edge.



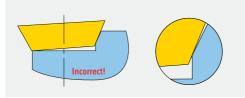
Average chip thickness

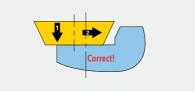
As the width of cut decreases, the chip tapers in a comma shape. Therefore, from widths of cut of less than 1/3 of the cutter diameter, the feed per tooth must be compensated using the formula shown in Fig. 2. This is often the case for contouring (Fig. 2) or when using side and face mills. For full slot milling (Fig. 1) or for widths of cut greater than 1/3 of the cutter diameter, use of this formula is not necessary.


The ideal average chip thicknesses (hm) feed per tooth (fz) for the Ingersoll inserts are stated in the respective cutting parameter recommendations and each is different depending on the design of the cutting edge. (refer to the "Recommended Cutting Data"). To put it more simply, an insert with a large protective chamfer at the cutting edge can or must be loaded with a higher chip thickness than that for a sharp edge. The use of an insert with

a chip thickness that is too low leads to poor chip formation and increased friction or heat build-up, resulting in decreased tool life. Overloading the insert with chip thicknesses that are too high, on the other hand, can cause the cutting edge to chip or break off completely. To achieve the best possible cutting results, the ideal chip thickness to match the insert that is in use is therefore imperative. As well as increased tool life, the use of the above-mentioned formula for contouring also leads to higher productivity.

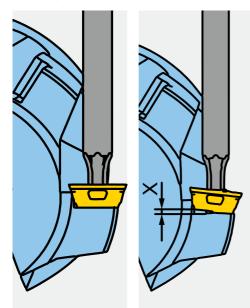
Effective width of cut


For circular internal and external machining operations, the stock allowance is not equal to the actual, effective width of cut. The following formulae are used for correct calcluation of this. The value aeeff determined in this way is then used to determine the feed per tooth in the formula given in Fig. 2.



Correct instalation of the inserts

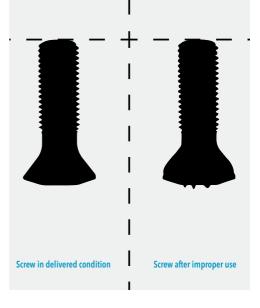
Tool damage due to canting of the insert



Correct installation of the inserts

Tips

- Occassionally apply copper paste to the thread
- Make sure that the insert pockets are clean
- · Correctly insert the inserts into the pocket
- Use a torque wrench


Important for initial installation or new screws: Tighten - Loosen - Tighten

Correct use of the insert screw

The importance of correct use of the insert screws is highly underestimated. It is however, extremely important for a successful cutting process.

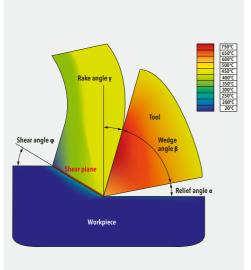
Even if carbide grade, chipbreaker and cutting parameters have been optimally selected, the failure of the insert screw inevitably leads to the loss of the installed insert and often to a tool defect. Moreover, damage to the machine tool and the part being machined cannot be ruled out.

The use of a suitable torque wrench is generally the solution here. While the tightening torque that is subjectively deemed to be correct varies greatly from employee to employee, a torque wrench always objectively provides the correct torque, no matter who is using it. The following diagram shows how serious improper use of the insert screw can be:

In addition to the use of torque wrenches, the use of ceramic or copper paste and changing the insert screws at regular intervals can provide additional process reliability. An overview of the Ingersoll torque wrench range is given below.

Torque wrench range

Designation	Torque		Matching bit	Picture
Preset torque wren	ch with straight hand	le, mechanical		
DTN005S	0,5 Nm		А	
DTN011S	1,1 Nm		А	
DTN020S	2,0 Nm		А	
DTN030S	3,0 Nm		А	
Preset torque wren	ch, mechanical			
DTN045F	4,5 Nm		В	
Adjustable torque	wrench with straight ł	nandle, mechanical		
DTNV01S	0,4-1,0 N	m	А	•
DTNV02S	0,8-5,0 N	m	Α	
DTNV00S	2,0-7,0 N	m	Α	
Magnetic bit holde	r without torque func	tion		
V1X105-BH	-		С	
	wrench (bit type A to	bit type C)		
DT-008-06	max. 8,0 I	Nm	$A \rightarrow C$	
Designation	Wrench size	max. torque	Bit	Picture
DS-T05TB	Torx 5	0,4 Nm	А	
DS-T06TB	Torx 6	0,6 Nm	А	
DS-T07TB	Torx 7	0,9 Nm	А	
DS-T08TB	Torx 8	1,3 Nm	А	
DS-T09TB	Torx 9	2,5 Nm	А	
DS-T10TB	Torx 10	3,8 Nm	А	
DS-T15TB	Torx 15	5,5 Nm	А	
DS-T20TB	Torx 20	8,0 Nm	А	
DS-T25TB	Torx 25	8,0 Nm	А	
DS-TP06TB	Torx Plus 6	0,8 Nm	А	
DS-TP07TB	Torx Plus 7	1,3 Nm	А	
DS-TP08TB	Torx Plus 8	2,0 Nm	А	
DS-TP09TB	Torx Plus 9	3,0 Nm	А	
DS-TP10TB	Torx Plus 10	4,5 Nm	А	T
DS-TP15TB	Torx Plus 15	6,6 Nm	А	
DS-H015TB	SW 1,5	0,9 Nm	А	
DS-H02TB	SW 2	1,8 Nm	А	
DS-H025TB	SW 2,5	3,8 Nm	А	1
DS-H03TB	SW 3	5,5 Nm	А	
DS-T15B	Torx 15, short	4,5 Nm	В	
DS-T15B1	Torx 15, long	4,5 Nm	В	
TXPLUS06X90-B	Torx Plus 6	0,8 Nm	С	
TXPLUS07X90-B	Torx Plus 7	1,3 Nm	С	
TXPLUS08X90-B	Torx Plus 8	2,0 Nm	С	
ТХ07Х90-В	Torx 7	0,9 Nm	С	
TX08X90-B	Torx 8	1,3 Nm	С	
ТХ09Х90-В	Torx 9	2,5 Nm	С	OTA DEALER -
TX10X90-B	Torx 10	3,8 Nm	С	
TX15X90-B	Torx 15	5,5 Nm	С	
TX20X90-B	Torx 20	8,0 Nm	С	
TX25X90-B	Torx 25	8,0 Nm	С	



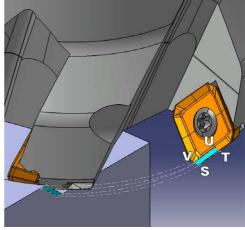
Chip formation model / Initial contact

Chip formation model

Many interrelationships and phenomena of the cutting process can be clearly explained by means of the chip formation model. First, when enough cutting force is present, the tool wedge penetrates the material that is to be machined, i.e. it deforms it elastically to begin with and - after the yield point is reached - plastically. The actual separation or cutting process thereby takes place in the shear plane. After the binding forces have been overcome, the workpiece molecules are pushed past each other under the release of heat.

The direct correlation between the insert resp. tool geometry and the cutting forces and temperatures that occur now also becomes clear. As can be seen in the diagram, a reduction of the rake angle leads to a smaller shear angle and thus to a longer shear plane. Consequently, the required cutting force and the resulting cutting temperature increase. In practice, the increased temperature can result in a shorter tool life and moreover a higher machine output is necessary. Conversely, a more positive rake angle leads to a larger shear angle and to a shorter shear plane. The cutting forces and cutting temperatures decrease.

However, the rake angle cannot be increased at will, as this always leads to a reduction of the wedge angle and thus the stability of the cutting edge. Therefore, the aim here is to reach the best possible compromise between smooth cutting and tool stability dependent on the material that is being cut.


It is also interesting to look at the temperature distribution. Based on the temperature jump it is clear to see that the actual cutting work and the greatest heat input take place in the shear plane. Due to friction on the rake face, the temperature rises even more. Cratering can thus occur at the point at which the cutting edge temperature is the highest. Measures to reduce the friction, such as minimum quantity lubrication, or smooth coatings can help to limit the temperature development and thus have a positive impact on the tool life.

Initial contact

The term initial contact refers to the type of contact that occurs between the tool cutting edge and the workpiece during the cutting process. As shown in Fig. 1, punctiform (e.g. S-contact), linear (e.g. S-T contact) or full surface (see light blue surface) contacts are possible. The type of initial contact can potentially have a great impact on the tool life.

The longer the time between the initial contact of the cutting edge and the engagement of point S, the better the tool life expectancy is, which studies have shown. This can be explained by the quite different stability of the cutting edge at the respective points. In practise, chipping/breakage of the cutting edge very often occurs in the area of the corner S, whereas this is virtually ruled out at point U. Therefore, a U-impact has proven to be beneficial for hard material crusts in particular.

The engagement of the tool (relative position between the workpiece and the tool) as well as the geometry of the tool (axial and radial installation positions) and indexable insert (neutral or positive chip breaker) can have an effect on the initial contact.

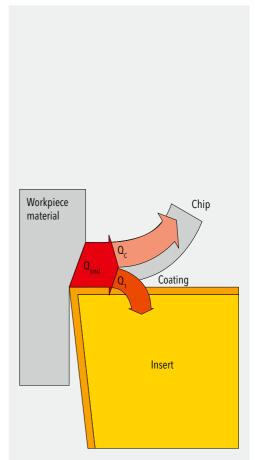
Consolidated heat value / Heat flow

Consolidated heat value

In daily practice, the metal cutter has to deal with a lot of different materials. Their machinabilty, however, greatly differs depending on their alloy content, physical-chemical properties, homogeneity and heat treatment state.

Materials with good machinability can thereby be machined at high cutting speeds and materials with poor machinability at lower cutting speeds. The crucial factor in the machining process is the heat that is produced, or rather how well this can be dissipated from the cutting tool material. The hot hardness of the cutting tool material and any coating must therefore be taken into consideration.

Knowledge of the consolidated heat value, which is the product of the heat capacity, density and thermal conductivity of the material that is to be machined, can be helpful in assessing the machinability, whereby the thermal conductivity has the greatest influence on the consolidated heat value (and thus also the machinability). This also explains, e.g. the very different machinability of aluminum and titanium alloys, as titanium has a 20 times poorer thermal conductivity than aluminum. Therefore, for titanium, the heat input into the cutting tool material can only be limited by the consistent use of coolants and by selecting moderate cutting speeds. However, the individual heat input is also important for all other materials for the definition of carbide grade, coating, cutting parameters and coolant.


Heat flow

As already illustrated in the chip formation model, the actual cutting work takes place in the shear plane area. Heat is thus produced, which has to be dissipated from the cutting tool material as effectively as possible. Ultimately, this is the sole purpose of all of the usual methods.

Due to the oil content, the water-oil emulsion of a conventional cooling lubricant reduces the friction on the one hand (and thus additional heat input) and on the other hand, the water content also contributes to the cooling. A reduction of friction is the background of minimum quantity lubrication (MQL). In cryogenic cutting processes, the tool cutting edge is cooled down using -196°C cold nitrogen. This results in considerably longer tool life, especially for difficult to machine materials, such or titanium or nickel-based alloys. Cutting tool material coatings generally have a higher hot hardness that the cutting tool material substrate.

Apart from that, they also minimize friction and act to a certain degree as a thermal insulation layer. However, the selection of the cutting parameters can also be used to influence the heat flow.

Large volume chips can dissipate more heat from the cutting edge; lower cutting speeds reduce the machining temperatures that arise. The use of moderate cutting speeds in conjunction with a higher feed can thus often increase the tool's serviceable life.

Chips

Types of chips

The types of chips that are produced during the machining process mainly depend on the workpiece material that is being machined, the geometry of the tool and the machining parameters. There are three main types of chip, whereby the transitions may be continuous:

Chip type	Characteristics	Chip formation	Conditions
Continuous chip	 continuous chip differing texture bottom side always smooth 	 continuous flow-off of the workpiece material chip elements are not separated in the shear zone, but are continuously reshaped 	 tough workpiece material under favorable cutting conditions (high cutting speed, positive rake angle)
Continuous chip with built-up edge	 individual, chip segments can be seen very jagged surface 	 chip lamellae are only minimally re-shaped in the shear plane, separated from each other, but are then re-welded to each other 	 faulty form of the continuous chip causes of the fault: flaws in the workpiece material, vibrations, rake angle too small, large depth of cut, low cutting speed
Discontinuous chip (segmental chip)	 single, non-connected chip elements rough surface due to fracture microstructure (advancing crack) 	 brittle materials fracture after just minimal deformation in the shear zone (e.g. cast iron, chilled casting, cast bronze, brass) in extremely brittle materials, complete disintegration of the chip lamellae 	 material with low plastic behavior (low cutting speed, negative rake angle)

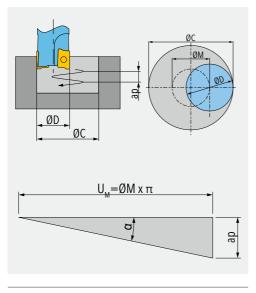
Chip form

The chip form is influenced by many variables. In turning operations in particular, the chip form is of great importance and can, e.g. be considerably influenced by the selection of a suitable chip breaker. Chip forms that combine a smallest possible volume with a low risk of injury are considered to be favorable. The chip forms can be divided up into the following categories:

Category	Chip form and volume ratio R	Assessment
1	Ribbon chip R ≥ 90	Unfavorable
2	Snarled chip $R \ge 90$	Unfavorable
3	Helical or screw chips $R \approx 60$	Acceptable
4	Helical or screw chip segments $R\approx 25$	Favorable
5	Spiral chip $R \approx 10$	Pavorable
6	Spiral chip segment $R \approx 5$	Favorable
7	Discontinuous chip or chip fragments R \approx 3; Partially welded together	Acceptable

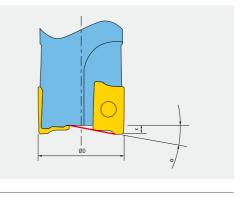
Measures for milling problems

Type of wear	Description	Cause	Solutions
Built-up cutting edge	Build-up of material welded to the cutting edge occurs when the chip doesn't flow off properly as due to the cutting temperature being too low.	 Cutting speed is too low Rake angle is too small Cutter material has too little wear resistance improper cooling 	 Increase the cutting speed Increase the rake angle Use of coatings Use of an efficient coolant
Flank wear	Extreme flank wear reduces the relief angle and impairs the surface quality	 Cutting speed is too high Cutter material has too little wear resistance Incorrect feed rate (feed rate too low) 	 Reduce the cutting speed Choose a cutting tool material with a higher wear resistance, choose a coated quality grade Adjust the feed rate to the proper ratio to the cutting speed and depth of cut (increase the feed rate)
Cratering	Cratering weakens the cutting edge and changes the cutting edge geometry.	 Cutting speed is too high Incorrect feed rate Rake angle is too small Wrong supply of coolant Cutter material has too little wear resistance 	 Reduce the cutting speed Set the feed rate, cutting speed and depth of cut to the correct ratio to each other Use a positive rake angle Increase the coolant quantity and/or pressure Use coatings
Cutting edge deformation	High mechanical stresses and high cutting temperatures can lead to plastic deformation of the cutting edges.	 The work temperature is too high resulting in softening of the base material due to too high cutting speeds and feed rates and hard workpiece materials Coating damage 	 Reduce the cutting speed, use more wear-resistant cutting material grades, reduce the chip cross section (especially feed), use of suitable edge rounding, reduce the bevel angle, provide cooling Change the insert early enough
Comb cracks	Cracks increasingly develop at right angles to the cutting edge caused by variations in thermal stress in the interrupted cut. Risk of breakage.	 Change in chip thickness Fluctuating cooling lubricant supply Alternating cooling and heating with accompanying change in stress (for interrupted cut) 	 Select uniform contact conditions Consistent supply of an adequate quantity of coolant, or in the case of carbides and ceramic cutting tool materials in particular, avoid cooling Select a tougher cutting tool material and better resistance to changes in temperature Supply an adequate cooling lubricant quantity, or for carbides, avoid it completely
Chipping of the cutting edge	Small material break-outs at the cutting edge, main in connection with flank wear.	OxidationAbrasion	 Choose a suitable coating reduce the cutting speed; exception: when machining heat-resistant material with ceramic cutting tool materials, increase the cutting speed



Circular interpolation milling / Ramping Capability / High feed milling

Circular interpolation milling


Milling tools with a known ramp angle α can also be used for circular interpolation milling. Provided that it can be produced with the respective tool, the hole diameter C is unimportant. Even an annular groove can be produced in this way. However, the hole diameter must not go below the minimum hole diameter Cmin, otherwise the tool cannot cut itself free and would get stuck. The maximum and minimum possible hole diameter, as well as the areas for even or uneven hole grounds are individually different depending on the indexable insert that is used. Please refer to the appropriate cutting parameter recommendations for details. The depth of cut ap per revolution can be calculated by means of the circumference of the tool center path using the following formula: $ap=(C-D) \times \pi \times tan\alpha$

Please note that here both, the ramp angle α and the calculated depth of cut per revolution, are maximum values, which can only be achieved under optimum conditions and with materials that have very good machinability. In general, only roughly half of the depth of cut that can be achieved in full slot milling should be undertaken.

Ramping Capability

The ramping capability of a milling tool is mainly determined by its diameter and the projection of the insert beyond the tool body. Therefore as a rule, the smaller the diameter of a tool is, the better its ramping capability will be. In the same way, a large projection dimension X contributes to a good ramping capability. Exceptions may arise if the indexable insert does not have a relief angle or if the angle is too small.

High feed milling

Although already described in the relevant technical literature at the end of the 1930's, the high feed milling principle only became popular more recently, as suitable machinery and tools became widely available. The objective of high feed milling is to increase productivity, which can be achieved with tools that have very small lead angles of $\varkappa < 20^{\circ}$. As shown in the following diagram, while maintaining the feed per tooth fz and the same depth of cut ap, a change in the slenderness ratio b/h occurs, which is directly influenced by the lead angle that is used.

The productivity advantage of high feed milling occurs when the usual chip thickness of h = fz during shoulder milling with \varkappa =90° (shown at the far left in Fig. 1) is transferred to a tool with a very small lead angle (e.g. \varkappa =15°, shown at the far right in Fig. 1). To achieve the same chip thickness here, the feed per tooth fz must or can be considerably increased - in the above case by a factor of 3.9.

In this context it must be noted that due to the small lead angle, more axial cutting forces occur. As longer tools are mostly used for the deep cavities that are often encountered in die and mould making, increasing axial forces along with simultaneous minimization of the radial forces is, however, actually useful. The paring entry of the cutting edge is another benefit of high feed milling. While during shoulder milling, the cutting edge penetrates the workpiece material rather abruptly, complete engagement of the high feed cutting edge takes much longer. A greatly extended tool life often results.

As shown in Fig. 2, round inserts are also suitable for high feed milling, provided that the depth of cut ap does not exceed as certain value. It must however be noted, that in the case of round inserts, the lead angle is not constant. Rather it begins at 0° and theoretically increases up to 90°. Therefore, in practice it has proven best to assume an average lead angle. As per definition, the term high feed milling can be used from a lead angle of

 $\varkappa \leq 20^{\circ}$, the maximum suitable depth of cut for high feed milling can be calculated with the help of the following formula, whereby D stands for the diameter of the round insert.

Exact calculation: $ap=D \times sin(20^{\circ})^2$ Approximation: $ap=D \times 0,1$

To now determine the feed per tooth that has to be programmed, the diameter of the round insert D and the desired chip thickness h are inserted into the following equation.

$fz=-(D/2) x \tan(20^\circ) + \sqrt{[D/2 x \tan(20^\circ)]^2 + h x D/\cos(20^\circ))}$

The use of round inserts for high feed milling does, however, have some disadvantages too. On the one hand due to the design, only a relatively low number of teeth can be accommodated by the tool body, which leads to a lower total feed rate. On

Insert/Geometry	Programming radius	max. depth of cut
UOMT06	R1	0,5
PEMT05	R2,5	1
DPM324R004 / DPM324R126	R4,5	3
DPM436R10	-	3,5
UNLU04	R0,9	0,5
UNLU06.	R1,6-R1,9	1
UNLU09	R2,5	1,5
UNLU11	R3	2
UNHU04	R1,2	0,5
UNKT05	R0,8-R1	0,5
UNHU06	R2	1
UNHU09	R3,2	1,5
UNHU11	R4	2

the other hand, milling into the 90° shoulders cannot be done at a high feed rate; in the corners or shoulders of the parts being machined, stock equal to at least the radius of the round insert is left unmachined. This remaining stock then has to be removed later with a different tool.

The use of tool systems that have been specially developed for high feed milling is therefore recommended in many cases. An exemplary comparison of the high feed indexable insert UOMT0602TR with a 6 mm round insert illustrates this (see Fig. 3.). Thanks to the UOMT0602TR's low space requirement, a lot more teeth can be accomodated with the same tool diameter. Due to the lead angle of more than 90°, milling into the shoulder can be done and less stock is left for later removal.

Insert/Geometry	Programming radius	max. depth of cut
UNHU14	R5	3
SDXS04	R1	0,5
SDXS09	R2,5	1,5
SDES13/SDMS13/SDXS13	R3	2,2
SDXS16	R4,2	2,5
SDES19 / SDMS19 / SDXS19	R4,5-R5,5	3,7
WCNW06/WCNT06	R2	0,9
LNXF09	R3,4	1,5
TNXN12	R4,5	2,5
ChipSurfer 45A	R2-R3	0,6-1,5
ChipSurfer 47A	R1,6-R3,6	0,4-1,2
Plendur INCERZ3	R0,42-R2,5	0,35-1,0
Plendur INCO0Z3	R0,28-R1,9	0,2-1,3

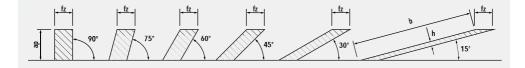


Fig. 1: Change in the chip thickness dependent on the lead angle \mathbf{x} at a constant tooth feed fz

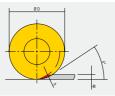
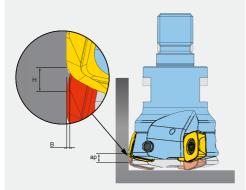
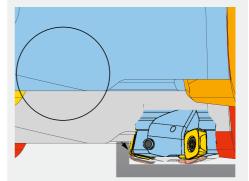


Fig. 2: Round indexable inserts are also generally suitable for high feed milling.



Fig. 3: Comparison of a 6 mm round insert with the high feed insert UOMT0602TR


Due to the special wide angle geometry of the tool and of the insert, maximum infeeds must be taken into consideration when machining 90° shoulders.


to this remaining stock, an undercut is produced at the unused cutting edge, which, depending on the material and insert geometry, in the worst case can cause the insert to break. The tables and figures below should be used to avoid this problem.

Contrary to conventional milling on free flat surfaces and contours, some stock remains when milling 90° shoulders. Due

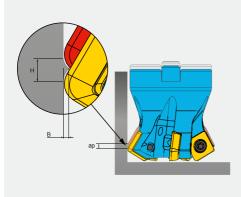
Consideration of the undercut in relation to D.O.C. for machining 90° shoulders with GoldSFeed SD_S13					
GoldSFeed insert	ap _{max} with undercut at 90° shoulder	Stock dimensions in the undercut (height x width)	ap _{max} without undercut at 90° shoulder		
SDES130515N	2	1,0 x 0,076	0,5		
SDES1305MDR	2	1,0 x 0,076	0,95		
SDES1305MPR / SDXS1305MPR-MR	2,2	0,74 x 0,05	1,45		
SDMS130515R-PH / SDXS130515R-PH	2	1,0 x 0,076	0,5		
SDMS1305MDR-PH / SDXS1305MDR-PH	2	1,0 x 0,076	0,95		
SDES130515N-001	2	1,0 x 0,076	0,5		
SDES1305MDR-001	2	1,0 x 0,076	0,95		
SDES1305MPR-001	2,2	0,74 x 0,05	1,45		

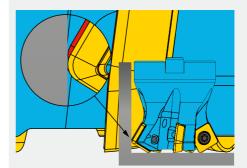
Consideration of the undercut in relation to D.O.C. for machining 90° shoulders with GoldSFeed SD_S19				
GoldSFeed insert	ap _{max} with undercut at 90° shoulder	Stock dimensions in the undercut (height x width)	ap _{max} without undercut at 90° shoulder	
SDES190620N	3	1,88 x 0,28	1,1	
SDES1906MDR	3	1,88 x 0,28	1,1	
SDES1906MPR / SDXS1906MPR-MR	3,7	2,16 x 0,23	1,5	
SDMS190620R-PH	3	1,88 x 0,28	1,1	
SDMS1906MDR-PH	3	1,88 x 0,28	1,1	
SDES190620N-001	3	1,88 x 0,28	1,1	
SDES1906MPR-001	3,7	2,16 x 0,23	1,5	

Infeed sequence with remaining undercut

Infeed sequence without remaining undercut

Characteristics of *CUAD* CUAD *** 13 & 19 mm for 90° shoulder milling


Due to the special wide angle geometry of the tool and of the insert, maximum infeeds must be taken into consideration when machining 90° shoulders.

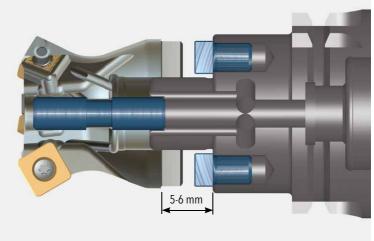

to this remaining stock, an undercut is produced at the unused cutting edge, which, depending on the material and insert geometry, in the worst case can cause the insert to break. The tables and figures below should be used to avoid this problem.

Contrary to conventional milling on free flat surfaces and contours, some stock remains when milling 90° shoulders. Due

Consideration of the undercut in relation to D.O.C. for machining 90° shoulders with GoldQuad ^{xxx} SD_S13					
GoldQuad ^{xxx} insert	ap _{max} with undercut at 90° shoulder	Stock dimensions in the undercut (height x width)	ap _{max} without undercut at 90° shoulder		
SDES1305MPR / SDXS1305MPR-MR	4,9	4,85 x 1,27	0,5		
SDES130516N-PF	4,9	4,9 x 1,52	0,5		
SDMS130516R-PP	4,9	4,9 x 1,52	0,5		
SDES130516N-PF1	4,9	4,9 x 1,52	0,5		
SDES1305MPR-001	4,9	4,9 x 1,52	0,5		

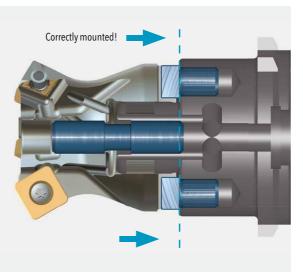
Consideration of the undercut in relation to D.O.C. for machining 90° shoulders with GoldQuad ^{xxx} SD_S19			
GoldQuad ^{xxx} insert	ap _{max} with undercut at 90° shoulder	Stock dimensions in the undercut (height x width)	ap _{max} without undercut at 90° shoulder
SDES190620N	7,8	7,44 x 2,64	0,5
SDES1906MPR / SDXS1906MPR-MR	7,8	7,44 x 2,03	0,5
SDES1906ZPR-PF	7,8	7,44 x 2,64	0,5
SDMS190620R-PH	7,8	7,44 x 2,64	0,5
SDMS1906ZPR-PP	7,8	6,45 x 2,48	1,3
SDES190620N-001	7,8	7,44 x 2,64	0,5
SDES1906MPR-001	7,8	7,44 x 2,03	0,5

Infeed sequence with remaining undercut


Infeed sequence without remaining undercut

GOLD<u>O</u>UAD^{★★★} 30° bevel high feed face mill

Mounting instruction for shell mill Ø 50 mm


Torque at the mounting screw: 20 Nm

Correct position of the cutter mounting screw prior to mounting

Mounting instruction

- Screw in the cutter mounting screw/differential screw backwards with the fine thread into cutter body until it reaches the limit stop.
- 2. Push the cutter onto the cutter arbor; a gap of approx. 5 6 mm results.
- 3. Tighten the cutter mounting screw/differential screw at the front side with a torque of 20 Nm.

Programming tips

- Program twice the factor for the feed rate to compensate for chip thinning
- As a general rule, select 60% of the tool diameter to determine the width of cut
- If possible, choose deeper depths of cut to improve the chip removal rate and achieve the highest productivity
- Ensure the optimal direction, flow and pressure of coolant and compressed air
- Use the HSM (High Speed Machining) functions of the CAM system for programming

Power output calculation / Drive Power

Power output calculation

Due to many influencing variables (e.g. insert and tool geometry, etc.) it is generally impractical to calculate the exact machine power output. It therefore makes more sense to just roughly calculate the required machine power output. The following table contains values for the specific stock removal rate $Q_{\rm sp}$, which illustrates how many cubic centimeters of a certain material can usually be cut per kilowatt and minute.

A high Qsp value thus represents materials with good machinability, or which make a high stock removal at low machine power outputs possible. The lower the value, the greater the power output of the machine must be and the more difficult the material is to machine. Please note that the calculated vales of Ptheo are only a rough rule of thumb!

Specific stock removal rate Qsp [cm ³ /kw x min]			
Р	Steel	15-30	
М	Stainless steel	~20	
К	Cast iron	25-37	
N	Non ferrous metals	~52	
S	Superalloys	11,5-15	
Н	Hard materials	~11,5	
0	Plastic & graphite	100-250	
For milling: $P_{they} = \frac{a_n x a_n x v_i}{Q_{xp} x 1000}$ For drilling: $P_{they} = \frac{D^2 x \pi/4 x v_i}{Q_{xp} x 1000}$ For turning: $P_{they} = \frac{a_n x f x v_i}{Q_{xp} x 1000}$			

Drive Power

Approximate required drive power determined with the help of the specific stock removal rate $\mathbf{Q}_{\rm sn}!$

$$P_{mot} = \frac{Q(cm^{3}/min)}{Q_{cn}(cm^{3}/kW x min)}$$

 $P_{mot} = \frac{a_e x a_p x v_f}{1000 x Q_{sp}}$

Table for the Qsp of different materials dependent on Q_{cn} (cm³ / kW x min)

Machined material	fz = 0,1 mm	fz = 0,25 mm	fz = 0,6 mm
35 Ni Cr Mo 16	15 - 17	18 - 20	22 - 24
38 CR Al Mo 7	16 - 18	19-21	23 - 25
42 Cr Mo 4	16,5 - 18,5	19,5 - 21,5	23,5 - 25,5
X 5 Cr Ni Mo 18 10	17,5 - 19,5	20,5 - 22,5	24,5 - 26,5
50 Cr V 4	17,5 - 19,5	20,5 - 22,5	24,5 - 27
16 Mn Cr 5	18 - 20	21,5 - 23,5	25,5 - 28
C 45 - C 60	19,5 - 21,5	23,5 - 25,5	28 - 31
Ti6Al4V	20 - 22	26 - 28	31 - 33
GGG	25 - 27,5	30 - 33	36 - 39
GG 26	28 - 31	33,5 - 37	39,5 - 43
GTW - GTS	32,5 - 36	38,5 - 42	45,5 - 49
MS 80	39 - 43	58 - 62	69 - 73
Al - Si	69 - 72	82 - 85	-
Al - Mg	83 - 85	100 - 105	

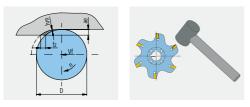
The higher value applies for normal positive cutting edge geometry, without a dull cutting edge.

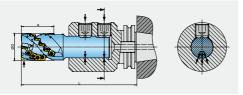
Example	
Conditions:	
Material:	C45
Tool:	ON5H080R00 (Ø80 mm; Z=10)
Vc:	150 m/min
fz:	0,25 mm
n =	600 U/min
Vf =	1500 mm/min
ae =	60 mm
ap =	3 mm
Machine power:	22 kW

Calculation P_{mot}

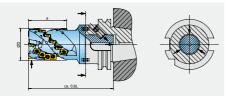
Q=270 cm³/min

 $Q_{sp}=24,5 \text{ cm}^3/\text{kW} \text{ x min}$

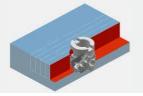

$$P_{mot} = \frac{Q (cm^3/min)}{Qsp (cm^3/kW x min)}$$


Tips

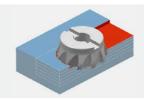
Mounting the cutting inserts


Insert the cutting inserts into the pockets and gently tap them into position with the plastic hammer until they reach the fixed stop. Before inserting the cutting inserts, the pockets must be cleaned and all chip residues removed.

Weldon versus InnoFit



Weldon vibrations


InnoFit 40% shorter

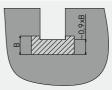
Shoulder mill versus extended flute end mill

Advantages:

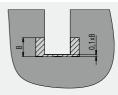
- Low engagement
- Small cutting arc
- Higher RPM
- More power
- For small machines, highQ [cm³/min]

Advantages:

• Always the first choice for small depths

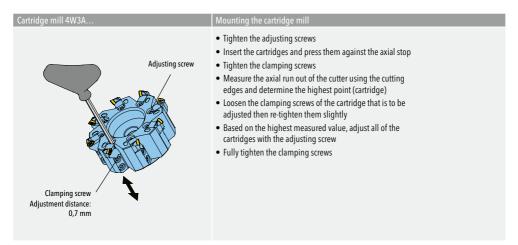

Application example T-Clamp slot mill

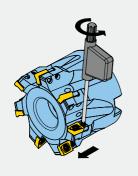
Depending on the depth of cut ae, the recommended feed rate must be corrected in accordance with the following table:


a <u>.</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
D	6	8	10	20
fz	15%	30%	45%	100%

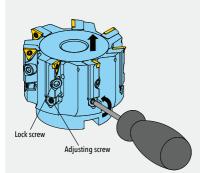
Cutting data		
D:	Cutter diameter (mm)	
n:	Speed of rotation (min ⁻¹)	
V _f :	Feed rate (mm/min)	
Vc	Cutting speed (m/min)	
a _e	Radial depth of cut (mm)	
h _m	Average chip thickness (mm)	
fz	Feed per tooth (mm)	
Z _{eff} :	Number of effective cutting edges	

Application example HiPosQuad T-slot mill


Under normal machining conditions: Supply plenty of coolant or compressed air to ensure good chip evacuation!


For low-power machines: Supply plenty of coolant or compressed air to ensure good chip evacuation!

Operating instructions


Shoulder mill 2J5P.

et the axial runout

- Screw in the differential screw clockwise to move down the adjusting wedge
- Mount the inserts and tighten the insert screws with a torque wrench (1.1 Nm)
- Turn the differential screw counter-clockwise to move the adjustment wedge into position
- Measure the axial runout of the tool and find the cutting edge with the highest measurement
- Turn the differential screw counter-clockwise to adjust the cutting edge to the nominal dimension
- · Tighten the insert screws again with the torque wrench
- The adjustment range should not exceed 70 µm

Finish mill 4W5D.

Nounting and Adjustmen

- Turn the adjusting screw clockwise to screw in the adjusting wedge until it reaches the stop
- Slightly loosen the adjusting wedge again by turning the adjusting screw approx. half a turn counter-clockwise
- · Insert the cartridge and push it against the adjusting wedge
- · Slightly tighten the insert screw
- Mount the inserts and tighten the insert clamping screw with 1.1 Nm
- Measure the axial runout of the tool and find the cutting edge with the highest measurement
- Turn the adjusting screw counter-clockwise to adjust the cutting edge to the nominal dimension
- Tighten the screws at the cartridge with 9 Nm
- Check the axial runout again, and if necessary, slightly adjust in the µ-range with the adjusting screws

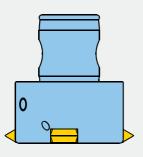
Circular thread milling / Finish milling

Process reliable machining

Controlled chip evacuation:

- · Whirling starts at the bottom of the bore
- Short comma-shaped chips
- Climb milling produces smooth cut

High repeatability:


• Due the use of inserts, the tolerance qualities are always the same

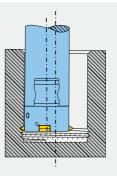
Highest quality

- Surface quality of the flanks better than µm Rt 1
- · Perfect geometric thread form

Low tool costs one tool for:

- Multiple diameters
- · Multiple pitches
- Right and left hand threads
- Metric and imperial threads
- Custom threads, which lie within the specified diameter range
- Low storage costs
- No regrinding
- All thread-cutting inserts can be used continuously for a certain pitch range

All thread cutters have internal coolant supply


Approximate values for circular milling of internal threads

Material	Cutting speed (m/min)		
Widteridi	Rm [MPa]	dry	wet
Steel	400-700	260	320
	500-800	230	300
	800-1100	200	280
	1100-1400	60	150
Cast steel	400-700	150	280

Thread pitch	fu (thread outer-Ø*)
1 mm	0,40 mm
2 mm	0,35 mm
3 mm	0,30 mm
4 mm	0,25 mm
5 mm	0,20 mm
6 mm	0,15 mm
7 mm	0,12 mm
8 mm	0,10 mm

* The feed rate of the cutter center point is calcuated using the following formula:

 $V_{fm} = \frac{(Thread outer \cdot \emptyset - D) x n x f x z}{Thread outer \cdot \emptyset}$

Attention!

These approximate values must be adjusted to meet the appropriate conditions! For very deep threads it is advisable to cut the thread in 2 passes.

In this chapter we would like to explain finish milling using Ingersoll MicroMill wiper insert tools.

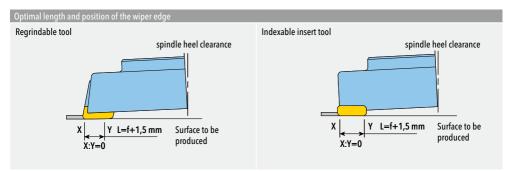
Finish milling principles

Whenever possible, the wiper insert milling method should be used for finish milling. With this method, all cutting edges involved in the cut have a secondary cutting edge, a so-called wiper, that runs parallel to the surface that is to be milled, and has the length of the feed that takes place during one spindle revolution plus overlapping.

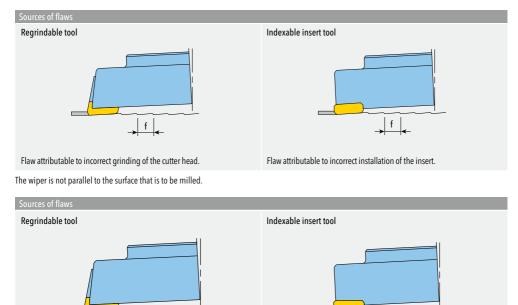
The effect of the wiper insert method is that the main peripheral cutting edges remove the stock and the wiper edges smooth the surface of the workpiece. In the course of one spindle revolution, the cutting edge that protrudes the most thereby removes the unevenness and roughness left by the preceding cutting edge. A level and smooth surface of a high quality is thus produced.

After a certain length of time, the highest cutting edge wears down more at the wiper than the other cutting edges. At that

point, other cutting edges come into play, until the milling tool has evened out to a certain axial runout plane.


In this state, the tool produces a very good surface quality over a long service life of the tool. In theory, just one single wiper edge would be enough to produce a finished surface.

Experience, however, has shown that the tool life is too short if a single trailing edge is used. Therefore, if the stability of the workpiece permits it, all of the cutting edges involved in the cut should be designed as wiper edges.

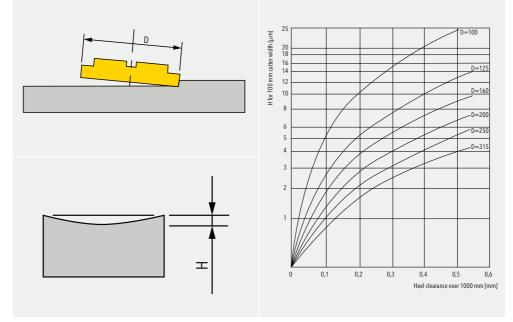

For particularly unstable workpieces, however, the face of every 2nd cutting edge can e.g. be ground down, or for insert tools, can be set back. This reduces the axial pressure of the cutting tool. The smoothness of the milled surface can thus be improved and vibrations avoided to the greatest possible extent.

The following compares the features of a properly designed, regrindable finishing tool and of the insert tool for finish milling.

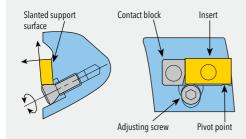
> Flaw due to: f>L

The wiper edge is positioned parallel to the surface that is to be machined and is approx. 1.5 mm longer than the feed per revolution (f).

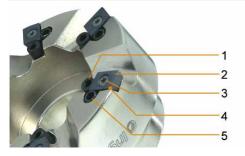
The length of the wiper insert is shorter than the feed per revolution (f).


Flaw due to:

► f>L


Finish milling

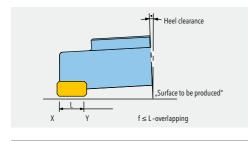
Heel clearance at the tool spindle prevents the tool from recutting


Occuring concave form deviation H

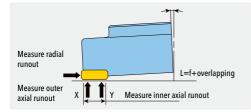
Function description

- The insert is moved on its insert seat tangentially along the slanted rest by screwing the adjusting screw out or in.
- At the same time, a height adjustment of the insert and thus a change in the position of the wiper takes place.
- The position of the wiper can be inclined or declined as necessary based on the application and the spindle heel clearance.
- The insert is normally set just once in the manufacturer's facility or when the tool is put into intial use.

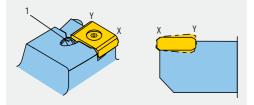
Details of a finish mill 6F2B


- 1. Eccentric pin
- 2. Insert
- 3. Insert screw
- 4. Pivot point
- 4.11V0t p011t
- 5. Adjusting screw

Operating instructions / Finish milling

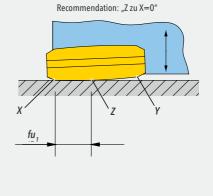

Maximum feed per revolution

The maximum feed per revolution (f) should be at least min. 0.4 mm smaller than the length (L) of the wiper edge. For tool series with different wiper lengths, refer to the tool description.



Adjustment of wiper edge

The wiper edge of the 6F2B/SF2B series has been set in the factory so that "X" is 0.01 - 0.015 mm higher than "Y". If the position of the wiper edge has to be corrected due to operating conditions, this is done by turning the adjusting screw 1. The insert screw 3 (see below) should be loosened before the adjusting screw 1 is turned. To increase the point "X" of the 6F2B/SF2B series relative to the point "X", the adjusting screw must be turned counter-clockwise.


The inner and the outer axial runout are measured, i.e. at Y and X, whereby deviations of 0.01 - 0.015 mm are permitted. It should be noted, however, that the axial runout on the inside (at Y) is generally poorer than at the outside (at X), as the insert tolerances and devations of the wiper setting add up there. The radial runout should be within 40 μ m. The required axial runout accuracy is achieved by interchanging the inserts.

Wiper adjustment recommendation

The Ingersoll MicroMill tools are delivered with a diameter dependent default wiper edge setting. In some cases, the wiper edge position has to be adjusted once to suit the intended application.

For this purpose, it is advisable to set the height of the wiper edge at point "Z" to the same level as "X". -> "Z to X = 0" An optimal waviness of the surface can thus still be achieved with a minimum of axial pressure. "Z" is located with respect to "X" at the distance of the necessary feed per revolution "fu".

Cutting arcs Large cutting arcs:

- high thermal load
- · low cutting speeds

Small cutting arcs:

- low thermal load
- high cutting speeds

ae-values of approx. 65 - 75% of the tool diameter should therefore be aimed for.

Effect of the stock allowance on the tool life

- Stock allowances that are too small, which are subject to edge rounding, mean increased cutting pressure, as the cutting edge pushes the chip ahead of itself.
- If the stock allowances are too big, the main cutting edge is subjected to too much load.
- The stock allowance has no effect on the wiper edge..

Finish milling

Change of feed rate for small and large widthsFor small widths of cut, the feed rate can be

- increased, because the hm-value decreases.
- Conversely, the feed rate should be reduced for large widths of cut.

Countermeasures for adverse conditions

Adverse conditions	Countermeasures
unstable clamping	use suitable clamping devices install additional clamping devices
unstable workpieces	 reduce the number of indexable inserts for large stock allowances: adjust the cutting parameters
big adaption length	 for large diameters: use a plane position, where possible for small diameters: provide suitable support

Defects and remedies

Defect	Remedy	
Waviness	Check the milling machine's guide for backlash Check the milling spindle backlash / tension	Note: The waviness is not produced by the tool!
Saw tooth profile	Heel clearance is not set correctly Re-adjust the tool with the adjusting screw	
R-value out of tolerance	Indexable inserts damaged, Stock allowance exceeded Indexable inserts have reached their wear limit	

Remedy	Chipping of the cutting edge	Extreme flank wear	Heavy cratering	Built up cutting edge	Cutting edge deformation	Comb cracks, insert breakage	Poor workpiece surface	Chatter, vibrations	Chip jamming	Edge break-outs at the workpiece	Machine overload
Cutting speed	G	Н	Н	G	Н		G	Р			Н
Feed per tooth	Н	G	Н	G	Н	Н	Н	Р		Н	Н
Cutting material toughness	G					G					
Cutting material resistance to wear		G	G		G P						
Lead angle				Р				Н	Р	Н	Н
Rake angle	Н			G P	G P	Р		G	Р		
Cutting edge land	G			Р			Н			Н	
Stability, tension	G					G	G	G			
Axial and radial runout							G	G		Р	
Positioning of the milling tool						Р	Р	Р		Р	
Cooling, chip evacuation			G	G	Р		Р		Р		
Depth of cut	Р					Р	Р	Р		Н	Н
Кеу	G: increa	se		H: reduce	2	P:	optimize				

OCTOPLUS OWHH

This tool is mainly used at high cutting speeds in cast iron range with SiN and CBN inserts. The OWHH-series is designated for short shipping materials. As an alternative carbide roughing and carbide finishing inserts can be assembled for usage at lower cutting speeds. In both cases the lower number of wipers will reduce the axial pressure into the workpiece.

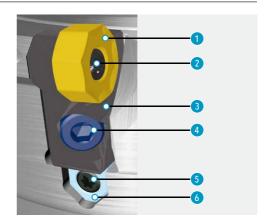
Recommended cutting data

Cutter material	ISO	Workpiece material	Recom. cutting depth ap [mm] finishing	Cutting speed Vc [m/min]	Feed per tooth fz [mm]
Carbide	к	Grey cast	0,2-0,5	110-180	0,1-0,25
SiN/CBN	ĸ	iron GG	0,2-0,5	450-1000	0,08-0,2
		SiN	I/CBN	н	M
	6		0		Ø
ONCL	J0505 ghing		ONCX050408FN-WCT finishing CBN	ONCU0505ANEN roughing carbide	ONCU050508FN-W finishing carbide

Attention! The OWHHxxxR00 finishing tool can be used either with the adjacent SiN/BN-insert grades or with the carbide inserts only.

Adjusting instructions

The finishing pocket can be adjusted as follows:


a) Finish over roughing:

- · First locate the highest roughing insert.
- With the mounting screw (4) loose, use the adjusting screw (5) to set the finishing inserts 0.05 mm above the highest roughing insert.
- Tighten the mounting screw with 8 Nm.
- If necessary repeat this sequence.

b) Face run-out:

The more accurate the face run-out is adjusted (approx. 2 - 4 μ m), the better the fi nal surface quality will be.

- For face run-out adjustment loosen the mounting screw (4) in order to avoid initial tension in the system.
- By turning the adjustment screw (5) clockwise, the height position of the insert increases. The highest point of the finishing insert is in the middle of the wiper.
- Der höchste Punkt der Schlichtschneide liegt in Schneidkantenmitte.
- Tighten the mounting screw with 8 Nm.
- If necessary repeat this sequence.

1	Finishing insert	ONCU / ONCX
2	Insert screw	SM40-100-10 (4,5 Nm)
3	Cartridge	60H183R02
4	Mounting screw	DIN 912 M5X16-12.9 (8 Nm)
5	Adjusting screw	SB060-10
6	Wedge	PA-5189

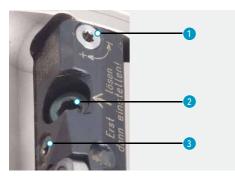
- Dial gauge 1
- 2 Insert
- 3 Insert screw
- Adjusting wedge 4
- 5 Wedge screw
- Screw driver 6

Gauge user guide

INCORRECT

Adjusting instructions

- Move adjusting wedge [4] to lowest position by turning the wedge screw [5] clockwise. Please avoid using too much force. 1
- Mount new cutting edge of insert. Make sure, that the insert pocket is thoroughly cleaned before mounting the insert. 2
- Please fix the insert screw [3] completely, as readjustment is not expected once it is done.
- Measure the runout of the cutter when all inserts are mounted and select the highest insert as a reference. 3
- Please ensure that insert edge is not damaged during adjusting. Use optimum dial pressure only.
- Set the height of the cutter raising the reference insert by turning the wedge screw [5] counter-clockwise. 4 Increase height by 0.01 mm at least from the highest insert.
- Adjust axial run-out of the remaining inserts with the same process as used with the reference insert. Max. adjustment height should not exceed 0.1 mm. 5 Adjust the run-out in the range of 0.005 mm by turning the screw driver gradually. If it is beyond the acceptable range, please repeat steps 1; 2 and 5.
- 6 The insert screws do not have to be re-tightened after the axial runout has been set.


Special precautions

- While loading a new insert corner, ensure that the adjusting wedge is in the lowest position. Bottom out the adjusting wedge completely before unclamping the insert from cutter.
- Clean the insert and pocket thoroughly before mounting fresh insert/corner.
- · While assembling adjusting wedge onto cutter body, please ensure that the adjusting wedge is tightened until it reaches the bottom. Also pay attention to the position of the wedge screw.

Adjustment instruction

- 1 Adjusting screw for axial adjustment 5 µm in height per increment
- 2 Clamping screw DIN912 M4 x 12
- 3 Adjusting screw for radial adjustment 5 µm in diameter per increment

Recommended cutting data for FormMasterV (adjustable)

FORMMASTER^V 5V2D...R00

Defined "incremental adjustment"! Adjustment range: +/- 0.5 mm (after presetting in the factory)

Tighten the clamping screw with 3 Nm! Use a Torx6 or Torx6Plus for tightening.

CBN insert (2 cutting edges) CNHU060310N-001 IN80B (R1) / CNHU060304N-001 IN80B (R0,4)

Adjustment of diameter

- 1. Check the diameter on the tool presetter(e.g. Ø 66.02 mm).
- Loosen clamping screw (2) of cartridge with 2 revolutions. Adjust setting screw (3) by 4 noticeable increments. Retighten clamping screw (2) with a torque wrench (adjustment at diameter of 4 x 0.005 mm = 0.02 mm).

Adjusting screw for radial adjustment

- 1. Check the linear dimension on the tool presetter (e.g.135.03 mm).
- 2. Loosen the clamping screw (2) at the cartridge by 2 turns. Turn the adjusting screw (1) with 6 noticeable increments. Re-tighten the clamping screw (2) with the torque wrench (axial adjustment = $6 \times 0.005 \text{ mm} = 0.03 \text{ mm}$).

ISO	Material	Cutting data	IN2005	IN05S	IN80B
	unalloyed steel	cutting speed vc [m/min]	200-350	-	-
	unanoyeu steer	feed per tooth fz [mm]	0,1-0,2	-	-
Р	alloyed steel < 800 N/mm ²	cutting speed vc [m/min]	180-300	-	-
F		feed per tooth fz [mm]	0,1-0,2	-	-
	alloyed steel < 1100 N/mm ²	cutting speed vc [m/min)	150-250	-	-
		feed per tooth fz [mm]	0,1-0,2	-	-
	gray cast iron	cutting speed vc [m/min]	200-300	-	800-1200
К	gray cast non	feed per tooth fz [mm]	0,1-0,2	-	0,05-0,12
ĸ	cast materials	cutting speed vc [m/min]	180-300	-	600-1000
	Cast materials	feed per tooth fz [mm]	0,1-0,2	-	0,05-0,12
s	aluminum	cutting speed vc [m/min]	-	800-1200	-
3	aiuiiiiiuiii	feed per tooth fz [mm]	-	0,1-0,2	-

- Recommended stock allowance for plunging: ae = 0.1 0.15 mm.
- At max. extension lengths the cutting speed vc must be reduced!
- For gray cast iron with a stock allowance of max. 0.1 mm plunging and back stroke machining is possible!

MICROMILL SFKX

This tool is designed for usage at high speed finishing in short chipping materials only. This cutter series creates low axial pressure into the workpiece due to a reduced number of wipers. In order to receive best surface results the wiper inserts should be adjusted in face run-out in between 3 - 5 $\mu m.$

The wiper insert with CBN layer can cover a max. feed per revolution of 6 mm. So the feed per revolution should be < 6 mm accordingly, however the max. allowed feed per tooth should not be exceeded (see below chart).

Recommended Cutting Data: Fumax. = 6 mm

ISC) Material	Recommended cutting depth ap [mm] finishing	Cutting speed Vc [m/min]	Cutting speed fz [mm]
IZ.		0,2-0,5	110-180	0,1-0,25
ĸ	gray cast iron	0,2-0,5	450-1000	0,08-0,2

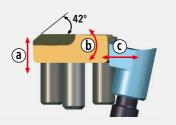
Adjustment instructions for 5FKX finish mills

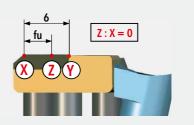
The finishing pocket can be adjusted in the following degrees of freedom:

a) Face run-out:

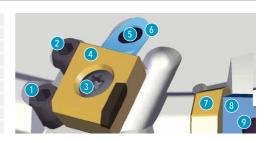
Uniformly turn both adjusting screws (1 + 2) in the same direction. (The wiper stations should thereby stand approx. 0.03 - 0.05 mm over the highest roughing station). To reduce the protrusion of the wiper stations, turn the adjusting screws (1+2) clockwise, to increase it, turn them counter-clockwise. Both adjusting screws must be adjusted by the same amount.

b) Wiper adjustment:


Turn the adjusting screw (2) counter-clockwise to set Y > X.


c) Diameter adjustment:

By adjusting with screw and wedge (5 + 6). The main cutting edge should overlap with the SiN roughing station in the 42°-area or stay max. 0.02 mm behind the roughers in radial direction.

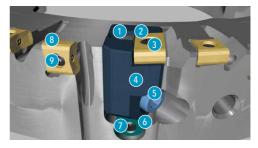

These adjustments must be done with the insert unclamped! After each adjustment (a. b. c) re-tighten the insert screw with 6 Nm.

1	Adjusting screw	SC050-01
2	Adjusting screw	SC050-01
3	Insert screw	SM50-160-10 (6 Nm)
4	Insert (CBN)	YWH454L101
5	Differential screw	SB060-02
6	Wedge	2M0612-01
7	Insert (SiN)	OPDN53-100
8	Clamping wedge	2K0610-01
9	Clamping screw	SB060-01 (4,5 Nm)

to b): adjustment of the wiper inclination

MCROMULL VFBN & VFEN

This cutter is mainly designed for finishing applications in short chipping materials. With these cutter series a lower number of wiper stations is in use, what creates less axial forces into the workpiece. For achieving a good surface finishing, these wiper stations should be adjusted in a face run out of approx. 3 - 4 μm . The feed per revolution should be choosen according to the required surface specifications, bit within the maximum allowed feed per tooth.



IS	0	Material	Recommended cutting depth ap [mm] finishing	Cutting speed Vc [m/min]	Cutting speed fz [mm]
		GG	0,3 - 0,5	110 - 180	0,10 - 0,35
	,	GGG	0,3 - 0,5	100 - 160	0,10 - 0,35
ľ	`	GJV	0,3 - 0,5	80 - 120	0,10 - 0,35
		ADI	0,3 - 0,5	80 - 120	0,10 - 0,35

Axial adjustment

1. Clean the tool.

- 2.Assemble the ▽-insert NND313.111. The face run out should be max. 0.025 mm. The insert screw (9) has to be tightened with 2 Nm for clamping the insert. Then search for the highest ▽-insert.
- 3.The finish-step over the highest roughing insert should be checked and adjusted with one YXD-insert (2) at the finish seats. The standard adjustment is 0.05±0.02 mm higher than the ⊽-insert. For adjusting the cartridge (4) please loosen the clamping screw (5) and adjust it in axial direction with the differential screw (7). Tighten the clamping screw again with 10 Nm and check the insert position. If necessary repeat and correct.
- 4. Assemble the other finishing inserts and and adjust those with the same sequence for a face run out of 3 4 μ m for finishing or 4 8 μ m for roughing application.
- 5.Check face and diameter run out again, check cutter height, if necessary correct.

No.	Item	Designation
1	Barrel screw	SC050-14
2	Adjustable finishing insert	YXD323-101/YXD334-100
3	Insert screw	SM40-110-00
4	Cartridge	56B193R00/56D193R00
5	Clamping screw	DIN 912 M6X30-12.9
6	Wedge	KR012-002
7	Differential screw	SB060-01
8	Insert	NND313-111
9	Insert screw	SM30-090-10

Adjustment of the wiper flat Y to X

Usually the standard adjustment is sufficient for the most finishing applications, but with the adjustment developed by Ingersoll, the wiper fl at can be adjusted to the required feed per revolution.

For further information of 'Adjustment of wiper' see page S. 37-38

Adjustment instructions rough-finishing cutter

The cutter is mainly designed for semi-finsih operations of short chipping materials, but depending on the conditions and requirement is can be used also for roughing operations with improved surface qualities as well as for finishing operations.


The cutter has a certain number of axial adjustable finishing stations, depending on cutter diameter. These are cutting effectively as a main cutting edge. In order to get good surface results, the face run out over the finish inserts should be approx. 4 µm. Thereby the feed/rev. can be bigger than the length of the secondary cutting edge of 6.5 mm.

ISC	Material	Recommend	ed cutting deptl	n ap [mm]	Cutting speed	Feed per tooth
150	Wateria	maximum	semi-finish.	finishing	Vc [m/min]	fz [mm]
	GG	7	1 - 1,5	0,3 - 0,5	110 - 180	0,12 - 0,35
12	GGG	7	1 - 1,5	0,3 - 0,5	100 - 160	0,12 - 0,35
K	GJV	7	1 - 1,5	0,3 - 0,5	80 - 120	0,12 - 0,35
	ADI	7	1 - 1,5	0,3 - 0,5	80 - 120	0,12 - 0,35

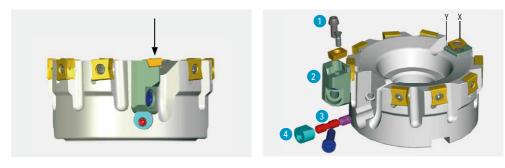
Adjusting instruction

- 1. Clean the tool.
- Assemble the roughing inserts HNCF090516TN-WE, their face run out should be max. 0,025 mm. The differential screw (3) should be tighten with 5 Nm for clamping the insert. Then search for the highest insert.
- 3.The finish-step over the highest roughing insert should be checked and adjusted with one finish insert HNCF0905DNN-W (1) at the finishing seats. The standard adjustment is 0,07±0,01 mm higher than the roughing insert (assemble the finishing insert with the pressed 'W' to the top). For adjusting the element (4) please loosen the differential screw (3) and adjust it in axial direction with the adjusting screw (5). Tighten the differential screw (3) again with 5 Nm and check the insert position. If necessary repeat and correct.
- 4.Assemble the other finishing inserts and adjust those with the same sequence in order to get the face run out within 3 4 μm for finishing, or 4 8 μm for roughing operations.
- 5. Check face and diameter run again, check cutter diameter and cutter height, if necessary correct.

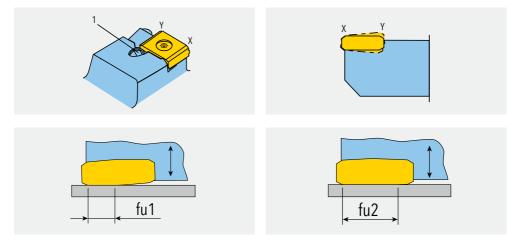
No.	Item	Designation
1	Adjustable finishing insert	HNCF0905DNN-W
2	Wedge	2M0612-01
3	Differential screw	SB060-02
4	Adjusting element	AJHN 10N
5	Adjusting screw	SO 40140I
6	Mounting bolt	SM40-110-00

Adjustment instructions semi-finishing cutter

At finishing operations the following feed rates per revolution should not be exceeded:


Insert	Feed rate per revolution
YDA323L101	8 mm/rev.
YDA323L114	4 mm/rev.
NNE324L109	4 mm/rev.

The feed rate per revolution must be selected accordingly to the required surface finishes, however, must not exceed the maximum feed per tooth of the roughing inserts!


Adjustment of finish insert above roughing insert

0,08 +/-0,02 (factory setting) can be adjusted by shifting insert holder (2) by means of wedge (4) via differential screw (3).

Adjustment of wiper flat

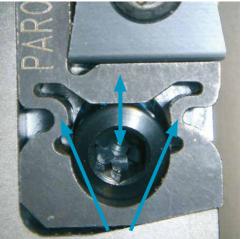
With the adjustment patented by Ingersoll the wiper flat can be adjusted to the required feed rate per revolution. Should the application conditions require a change of the position of the wiper flat, it is carried out by turning the adjusting screw (1). Before adjusting the wiper flat, the insert must be loosened. For the series VF2V adjustment is carried out in lefthand direction Y>X.

Adjustment instructions shoulder-type milling cutter

₩<u>₩</u>₩

NOTE: At finish operations the following feed rates per revolution should not be exceeded:

Insert		Feed rate per revolution
	YNE324-100	max. 3,8 mm/rev
S	NYE324R100 (PKD)	max. 3,0 mm/rev.



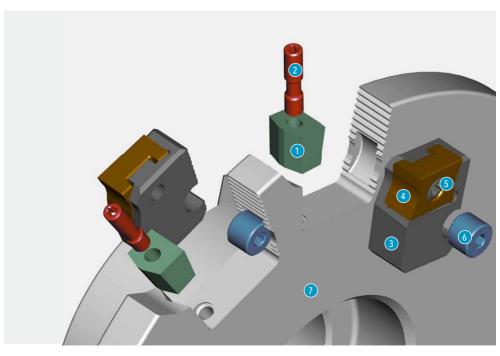
Adjustment instruction:

No.	Item	Designation
1	L-nest	PAR0615
2	Insert screw	SM40-120-20
		NNE324 or
3	Insert	NJE324 or
3		YNE324 or
		NCE325
4	Adjusting screw	SC05-14

- 1. Clean cutting tool.
- 2.At first loosen adjusting screw (4) to relaease the L-nest. Then turn in the adjusting screw only until contact with L-nest has been made (without making any adjustment yet).
- 3. Equip cutting tool with inserts (3) and slightly fasten insert screws (2) by approx. 1 Nm.
- 4.Look for highest insert seat and adjust it in axial direction by 0.02 mm with adjusting screw (4).
- 5.Now tighten insert screw with 4.5 Nm by pressing the insert into the insert seat at the same time.
- 6.Adjust remaining inserts in axial direction by repeating steps 2 to 5 until an axial run-out of 3 to 4 μm is obtained.
- 7. Finally check axial and radial run-out again as well as cutting tool dia. and overall height and correct them, if necessary.

Flexible area

Adjustment instructions slotting cutter



Adjustment instructions slotting cutter

- 1 Mount adjusting screw [6] lightly greased into the cartridge [3].
- 2 Screw the lightly greased differential screw [2] into the mounting wedge [1] until it overlaps approx. 1 mm from the wedge surface.
- 3 Mount cartridge [3] into the cutter body [7], so that screw [6] is positioned in the circular groove at the cartridge contact face.
- 4 Fix the cartridge [3] with your fingers and use differential screw [2] to position the clamping wedge [1] in the V-shape of the cutter body [7] and mount it loosely free of clearance.
- 5 Repeat steps 1 4 for the opposite cartridge and proceed diagonally until all cutter slots are mounted with cartridges.

Tool height and cutting width are adjusted with the mounted insert [4] in the cartridge [3] with adjusting screw [6] on a measuring
 table and dialgauge according to the parameters and cutting width range in the catalogue. A runout inspection fixture or profile projector simplifies the adjustment.

- 7 After the exact cutting edge position has been reached, please tighten the differential screw [2] with a torque wrench adjusted 2.5 Nm.
- 8 Repeat steps 6 7 for all cartridges, until the exact cutting width is adjusted and an axial run-out of 0,02 0,03 mm has been reached.

Adjustment instructions duo-bore finishing tool

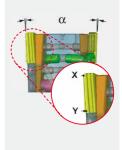
POWERMAX XJ-50004SJ6

In addition to the diameter adjustment Ingersoll cutters with adjustable duo-finishing pockets also offer the possibility to adjust the inclination of the minor cutting edge towards the bore wall. That way the inclination of the minor cutting edge of the insert (5) can be adjusted according to the required feed per revolution fu.

NOTE: Adjustment of inclination is not affected by a following diameter adjustment!

No.	Item	Designation
1	Anvil	PA-5039
2	Eccentric pin	PN080-01
3	Screw	SM40-130-00
4	Barrel screw	SC050-14
5	Insert	YCE323-107/108
6	Wedge	GZ-5022

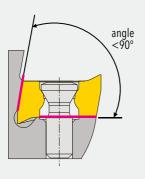



Adjustment of inclination

- 1. Clean the tool, mount it on an optical inspection device and lock the spindle.
- 2. Loosen insert screw (3) by approx. 1/2 to 3/4 of a turn.
- 3. The diameter position of point Y can be adjusted in relation to point X by turning the barrel screw (4):
 - Clockwise turn of barrel screw (4) Y grows in diameter in relation to X.
 - Counter-clockwise turn of barrel screw (4) Y diameter is reduced in relation to X.
- 4. Press insert (5) into the pocket and tighten the insert screw (3) with a torque of 4,5 Nm.
- 5. Check position of X to Y, if necessary repeat adjustment.

Diameter adjustment

- 1. Clean the tool, mount it on an optical inspection device and lock the spindle.
- 2. Loosen insert screw (3) for insert (5) and anvil (1) by approx. 1/2 to 3/4 of a turn.
- 3. Adjust insert (5) by turning the eccentric pin (2) for a first pre-adjustment. The setting should be approx. 0.01 mm smaller than the nominal dimension.
- 4. Tighten insert screw (3) for insert (5) and anvil (1) with a torque of 4.5 Nm.
- 5. Repeat procedure 2 to 4 for final diameter adjustment. It is recommended to record the diameter position after loosening the screws (3). Then the remaining amount to the nominal diameter dimension can be adjusted easily.




Technical features

PRODUO Ball nose end mill 1TW

- One insert type fitting into both insert seats (central cutting edge and peripheral cutting edge).
- Different insert types are not necessary (less insert variety)!
- Insert and pocket are marked with crossline-signs for correct assembly (protection against wrong positioning).

Helix-cutting edge for smooth milling

Axial supporting side for strong clamping.

Dovetailed machanism

Technical features

Why choose PunchIn:

- Considerably shorter roughing times
- Shortens the workpiece throughput time
- · Very high stock removal rate
- Smooth cut
- Particularly suitable for deep contours
- Effective use from 2.5 x D
- · Mainly axial forces, little radial deflection

TIPS plunge milling:

- For plunging and for contact with the bottom at a length of approx. 3 mm, the feed rate should be reduced to 70-80%.
- When machining VA steel, the feed rate must not be reduced when plunging.
- Movement away from the contour before retracting to the safety level is recommended, depending on the workpiece and diameter between 0.3 - 1 mm.

Examples of tools suitable for plunging

DHU...X_R00

PHU...X

Slot cutter with angular radius

SHU...R50/51

1

5V2D

5V6G

QHU...F/E

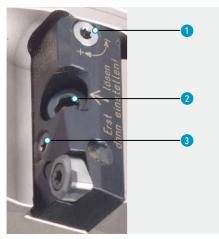
12U5... carbide shank

step

V,70%

V,

V,70%


Rapid fee

Technical features

FORM MASTER^V Adjustable finish mill 5V2D...R00

Adjustment instruction

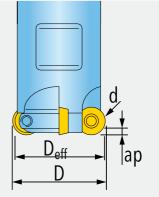
Defined "incremental adjustment"! Adjustment range: +/- 0.5 mm (after presetting in the factory)

Tighten the clamping screw with 3 Nm! Use a Torx6 or Torx6Plus for tightening.

Adjustment in diameter


- 1. Check the diameter on the tool presetter (e.g. Ø 66.02 mm).
- Loosen clamping screw (2) of cartridge with 2 revolutions. Adjust setting screw (3) by 4 noticeable increments. Retighten clamping screw (2) with a torque wrench (adjustment at diameter of 4 x 0.005 mm = 0.02 mm).

Axial adjustment


- 1. Check the linear dimension on the tool presetter (e.g.135.03 mm).
- 2. Loosen the clamping screw (2) at the cartridge by 2 turns. Turn the adjusting screw (1) with 6 noticeable increments. Re-tighten the clamping screw (2) with the torque wrench (axial adjustment = 6 x 0.005 mm = 0.03 mm).

Cartridge: 7050739 65D133R00

- 1 Setting screw: axial adjustment 5 µm in height per increment
- 2 Clamping screw DIN912 M4 x 12
- 3 Setting screw: radial adjustment 5 µm in diameter per increment

Effect of the tool geometry on the effective cutting speed

15B1E030043X8R00 RHHW0802MOTN IN2006

 $d_{eff} = 2 x \sqrt{a_p x (d - a_p)} + (D - d)$

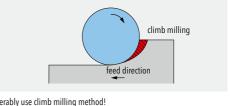
Tool Ø mm: 30 Insert Ø mm: 8 ap mm: 0,4 eff. tool Ø mm: approx. 25,5

Determination of the effective diameter

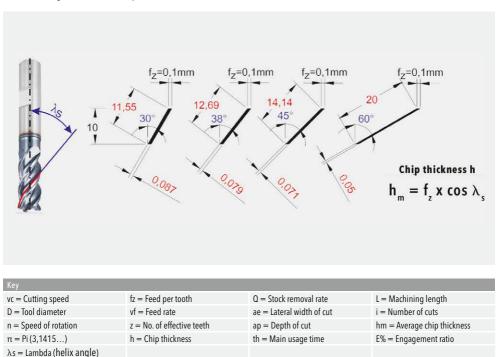
 $d_{eff} = 2 x \sqrt{a_p x (D_c x a_p)}$

Solid carbide cutters

General formulae

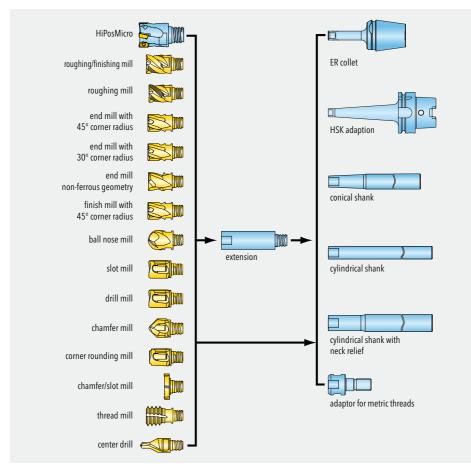

VariableUnitFormulaSpeed of rotationmin ⁻¹ $n = \frac{V_c x 1000}{D x \pi}$ []Cutting speedm/min $v_c = \frac{D x \pi x n}{1000}$ []Feed ratemm/min $v_t = f_z x Z_{eff} x n$ PreferalFeed per toothmm $f_z = \frac{V_t}{Z_{eff} x n}$ MachiAverage chip thicknessmm $h_m = f_z x \sqrt{a_e/D}$ PreferalMain utilization timemin $t_h = \frac{L x i}{V_t}$ Preferal				
Cutting speedm/min $v_c = \frac{D \times \pi \times n}{1000}$ Image: Constraint of the system of the s	Variable	Unit	Formula	
Feed ratemm/min $v_t = f_z \times Z_{eff} \times n$ PreferalFeed per toothmm $f_z = \frac{V_t}{Z_{eff} \times n}$ MachinAverage chip thicknessmm $h_m = f_z \times \sqrt{a_e/D}$ Main utilization timeMain utilization timemin $t_h = \frac{L \times i}{V_t}$	Speed of rotation	min ⁻¹	$n = \frac{v_c x \ 1000}{D \ x \ \pi}$	
Feed ratemm/min $v_f = f_z \times Z_{eff} \times n$ MachiFeed per toothmm $f_z = \frac{V_f}{Z_{eff} \times n}$ Average chip thicknessmm $h_m = f_z \times \sqrt{a_e/D}$ Main utilization timemin $t_h = \frac{L \times i}{V_f}$	Cutting speed	m/min	$v_c = \frac{D x \pi x n}{1000}$	[
Feed per toothmm $f_2 = \frac{V_f}{Z_{eff} \times n}$ Average chip thicknessmm $h_m = f_2 \times \sqrt{a_e/D}$ Main utilization timemin $t_h = \frac{L \times i}{V_f}$	Feed rate	mm/min	$v_{f} = f_{z} x Z_{eff} x n$	
Main utilization time min $t_h = \frac{L x i}{V_f}$	Feed per tooth	mm	$f_z = \frac{V_f}{Z_{eff} x n}$	
	Average chip thickness	mm	$h_m = f_z x \sqrt{a_e/D}$	
	Main utilization time	min	$t_h = \frac{Lx i}{V_f}$	Prefera

Machining of soft materials


Preferably use climb milling method!

Machining of hard materials > 50 HRC

Chip thickness h


As the helix angle increases, the chip thickness decreases!

Ingersoll

ChipSurfer

The ChipSurfer belongs to a modular tool series, consisting of a shank with multiple interchangeable tips for a multitude of different applications.	Cutter-Ø	Thread-in thread	Nm
Roughing and finishing of 2D and 3D contours.	6,4/8	T05	7
Shoulder milling with close pitch, 90° milling tips.	9,5	T06	10
Special slotting tips for steel and aluminum.	12,7	T08	15
Custom geometries possible thanks to new sintering technology.	15,9	T10	28
Rigid screw connections for vibration-free milling and high feed rates.	19	T12	28
Different tool shanks available for optimal contour adaptation.	25,4	T15	28
When changing the tips, attention must be paid to proper tightening.			
The contact surface of the tip and the holder must be level.			
Before tightening, ensure tools are clean.			
Benefits			
Lightning-fast exchange of the tips heads at the machine.			
High repeatability and true running accuracy.			

Installation of the ChipSurfer

Step 1

Screw in the ChipSurfer hand-tight (Fig. 1) until you see a small air gap at the connection (Fig. 2).

Step 2

Tighten the ChipSurfer 1/4-turn (Fig. 3).

Step 3

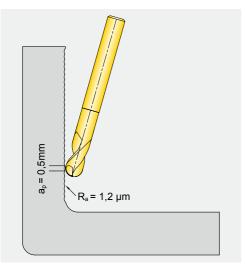
Check that the ChipSurfer is properly seated with a feeler gauge.

The feeler gauge must not fit between the holder and the ChipSurfer (Fig. 4).

If it does still fit, tighten the ChipSurfer again until the feeler gauge no longer fits in the gap (Fig. 5).

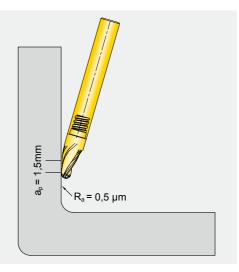
NOTE: You can purchase a preset torque wrench (DT- ... series)

Fig. 4: the feeler gauge must NOT fit in the gap



Technical features conical segment cutter

CHIPSURFER Tapered end mill 46W...


The uncoated version in the grade IN05S with polished chip gullets covers machining operations in the aluminum industry. The version in coated grade IN2005 with the special cutting edge geometry ensures the best results in mold and die industry and aerospace industry. The grades IN05S and IN2005 are ideal for machining aluminum materials, steels of material group "P", stainless steels of material group "M" and difficult to machine materials of group "S".

Compared to conventional ball nose cutters the cutting edge form in 3-fold radius design has the great advantage that up to 3 times higher ap can be reached, which drastically reduces the machining time. Furthermore, the very large flank radii create a soft overlapping and thus a visible and palpable improvement of the generated surface quality. Due to the tapered basic geometry side walls <90° can also be machined very efficiently, economically and reliably.

The high-precision cutting edge profile with a profile tolerance of +/- 10 μm and the indexing tolerance of the ChipSurfer system of +/- 20 μm allow the tools to be changed directly at the machine's spindle, thus simplifying the practical handling of the tools. Thanks to the long-proven ChipSurfer system, every version of shank extension is available. The short-design steel extensions and the overlong vibration-damped carbide and heavy metal shanks make the ChipSurfer bevel cutters very flexible to meet the different requirements with respect to machining cavities, machines, and above all, workpiece conditions.

Suitable CAD/CAM systems are required, which can calculate the multi-axis machining operations with tapered end mills and convert to machining strategies accordingly, machining strategies, as e.g. strategy "Advanced Toolform" of Work NC.

Advantages

- Highly economic finishing tools for multiple-axis machining and for side walls <90.
- Improved surface quality.
- Up to 3 times faster machining times compared to ball nose cutters.
- 3-fold radius at cutting edge contour.
- Unique interchangeable head solution for mold and die industry, aluminum machining and aerospace. industry, especially for turbine blades, impellers and blisks.
- Ø8/Ø10/Ø12/Ø16.
- Uncoated aluminum geometry and coated steel geometry.
- Shank extensions in steel / carbide / heavy metal.
- \bullet Profile accuracy +/- 10 μm / tool change accuracy +/- 20 $\mu m.$

Produktübersicht

Aluminum geometry - IN05S

Steel geometry - IN2005

CHUPSURFER Finsh mill lens-shape 46D... with I.C.

The finishing end mill in lens-shape is designed to handle expecially long-lasting finishing operations with standard ball nose end mills in less time while improving the surface quality. The high-precision ground front geometry is suitable for larger path offsets in semifinish and finish operations. The large radius creates smoother transitions of the machined paths and thus an improved tactile, visible and measurable surface quality. The new finishing end mill will cover the diameter range Ø8/Ø10/Ø12/ Ø16 and Ø20 mm.

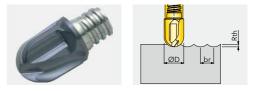
A special feature is the internal coolant supply, which is exactly directed into the machining area to improve the tool life significantly.

Application Range

Suitable for multi-axis semi-finishing and finishing of blisks, impellers and turbine blades in aircraft industry as well as for applications in die & mold industry and general mechanical engineering.

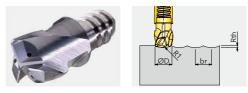
Grade IN2005 in combination with the special insert geometry provide best results in die & mold industry as well as in aircraft industry. Steels of machining group "P", stainless steels of group "M", difficult to machine materials of group "S" and cast materials of group "K" can be machined excellently.

Technical Features


Due to the high-precise insert's profile tolerance of +/- 10 μm and the exchange accuracy of the ChipSurfer system of +/- 20 μm tools can be exchanged directly at the machine spindle, which allows much easier handling of tools in practice. The longproven ChipSurfer system provides any type of shaft extensions. The short-design steel extensions and the overlong vibrationdamped carbide and heavy metal shanks make the lense-shape ChipSurfer multi purpose to meet the different requirements with respect to machining cavities, machines, and above all, workpiece conditions.

If necessary, particular attention must be paid to suitable CAD/ CAM systems, which are able to program multi-axis machining with lens shape end mills and to develop appropriate machining strategies.

Advantages


- High perfomance finish mills
- Improved surface quality and machining time compared to ball nose tools
- Precise lens-shape geometry
- Unique exchangeable head system for mold & die industry
- Ø8/Ø10/Ø12/Ø16
- With internal coolant supply and 3 coolant outlet bores
- Shaft extensions in steel / carbide / heavy metal
- Profile accuracy +/- 10 µm / exchange accuracy +/- 20µm

Calculation of Path Distance br Ball nose end mill

Calculation of path distance br at desired roughness depth R_{th} 2,5 μ				
R _{th} : 0,0025 mm				
Ø / R :	Ø 8 / R= 4			
Formula:	$b_r = 2x\sqrt{R_{th}(D - R_{th})}$			
b _r : 0,28 mm				

Lens-shape end mill

Calculation of path distance br at desired roughness depth Rth 2,5 μ				
R _{th} : 0,0025 mm				
Ø / R :	√08/R=4			
Formula: $b_r = 2x R_{th} ((DR1 x 2) - R_{th})$				
b _r :	0,55mm			

Comparison of Path Distance Ball Nose End Mill vs. Lens-shape End Mill

Path distance br at roughness depth Rth 2,5µ:

ball nose end mill		lens-shape end mill			
Ø[mm]	r [mm]	br [mm]	Ø [mm]	r [mm]	br [mm]
8	4	0,28	8	15	0,55
10	5	0,32	10	20	0,63
12	6	0,35	12	25	0,71
16	8	0,40	16	35	0,84
20	10	0,45	20	45	0,95

Path distance br at roughness depth Rth 5,0µ:

ball nose end mill		lens-shape end mill			
Ø[mm]	r [mm]	br [mm]	Ø[mm]	r [mm]	br [mm]
8	4	0,40	8	15	0,77
10	5	0,45	10	20	0,89
12	6	0,49	12	25	1,00
16	8	0,57	16	35	1,18
20	10	0,63	20	45	1,34

CHIPSURFER BARREL-FORM END MILL 48E...

The series of barrel-form end mills is designed to handle expecially long-lasting finishing operations with standard ball nose end mills or toric mills in less time while improving the surface quality. The high-precision ground barrel shape geometry is suitable for larger path offsets in semi-finishing and finishing operations. The large radius creates a softer transition of the machined paths and thus a sensible, visible and measurable improved surface quality.

The barrel-form end mills cover the diameter range Ø12 and Ø16 mm.

Application Range

Thanks to the unique cutting geometry of the tool - the 6-flute design paired with the advantages of the ChipSurfer interchangeable head system - the barrel cutter covers finishing applications on 90° shoulders as well as steep free-form surfaces where we do not expect collision due to clamping and/ or part profile. The special design of the barrel-form end mill also enables it to be used on 3-axis machines and components, for which machining on deep cavities represents an enormous challenge.

Grade IN2005 together with the special cutting edge geometry ensure best results in mould & die industry as well as in aerospace industry. Steels from material group "P", stainless steels from material group "M", difficult-to-machine materials from group "S" and cast materials from group "K" can be machined excellently.

Technical Features

Due to the high-precise insert's profile tolerance of +/- 10 μ m and the exchange accuracy of the ChipSurfer system of +/- 20 μ m the tools can be exchanged directly at the machine spindle, which allows much easier tool handling in practice. The long-proven ChipSurfer system provides any type of shaft extensions. The short-designed steel extensions and the overlong vibration-damped carbide and heavy metal shanks make the ChipSurfer barrel-form end mills multi-purpose to meet the different requirements with respect to machining cavities, machines, and above all, workpiece conditions.

If necessary, particular attention must be paid to suitable CAD/ CAM-systems, which are able to program multi-axis machining with circle segment cutters and to develop appropriate machining strategies.

Advantages

- Highly economical finishing cutters
- Improved surface quality and machining times several times faster than ball nose cutters
- High precision barrel geometry
- Unique interchangeable head system
- Ø12/Ø16
- Shaft extensions in steel / carbide / heavy metal
- Profile accuracy: +/- 10 μm, exchange accuracy: +/- 20μm

Calculation of Path Distance ap

Ball nose end mill

Barrel-form end mill

Calculation of path distance ap at desired roughness depth Rth 2,5 μ		Calculation of path distance ap at desired roughness depth Rth 2,5 μ	
Rth: 0,0025 mm		Rth:	0,0025 mm
Ø/R:	Ø / R : Ø 12 / r= 6		Ø 12 / R1= 70
Formel:	$b_r = 2x\sqrt{R_{th} (D - R_{th})}$	Formel:	$b_r = 2x\sqrt{R_{th}((DR1 \times 2) - R_{th})}$
ap:	0,35 mm	ap:	1,18mm

Comparison of Path Distance Ball Nose End Mill vs. Barrel-form End Mill

Path distance ap at roughness depth Rth 2,5µ:

ball nose end mill		barrel-form end mill			
Ø [mm]	r [mm]	ap [mm]	Ø[mm]	r [mm]	ap [mm]
12	6	0,35	12	25	1,18
16	8	0,40	16	35	1,41

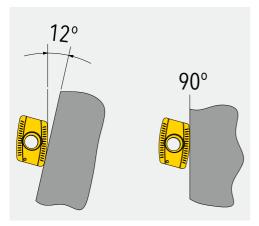
Path distance ap at roughness depth Rth 5,0µ:

	ball nose end mill			barrel-form end mill	
Ø [mm]	r [mm]	ap [mm]	Ø[mm]	r [mm]	ap [mm]
12	6	0,49	12	25	1,67
16	8	0,57	16	35	2,00

Path distance ap at roughness depth Rth 10,0µ:

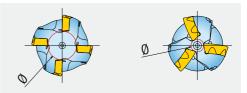
	ball nose end mill			barrel-form end mill	
Ø [mm]	r [mm]	ap [mm]	Ø[mm]	r [mm]	ap [mm]
12	6	0,69	12	25	2,37
16	8	0,80	16	35	2,83

With the finishing cutters of the HiPosProB series, semi-finishing and finishing applications on 90 ° sides or bevels, where traditional round insert tools were previously used, are now carried out more effectively and productively. Thanks to the special barrel shape of the insert cutting edge, higher path distances and feed rates can be achieved, with at least the same surface quality.

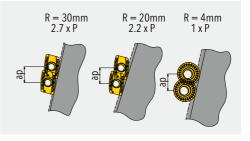

The new series is offered as a screw-in type with metric thread connection in diameters 016 /20/25/35/42 and as well proven high-precision type with a Ts-adaption in diameters 016 /20/25. On customer's request, diameters and tool holder types that are not listed can also be manufactured as semi-standard tools.

Application Range

Especially suited for die and mold industry, but also across industries for general mechanical engineering and aerospace industry.


Thanks to the inclined insert seat in the tool body, a wide range of different mold inclines of up to 12 $^{\circ}$ can be covered on workpieces without additionally adjusting the spindle axis.

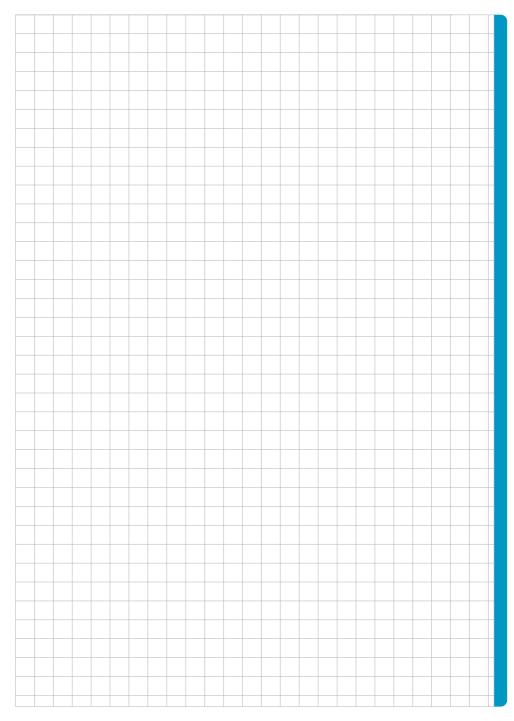
Due to the availability of different cutting material grades, the common material groups P/M/K can be machined as well as hardened material group link H up to 54HRC and difficult-to-machine materials of material group S.



Technical Features

- Stable tool core compared to classic round insert tools
- Finer pitch

• Up to 2.7 times of infeed/path distance compared to round insert tools with the same theoretical roughness depth Rth



Advantages

- Barrel-shaped finishing insert
- 2 radius sizes and 3 grades each
- Large path distances = short machining times
- Finishing on 90 ° shoulders and mold inclines up to 12 ° without additional spindle adjustment
- Up to 2.7 times higher productivity compared to round insert tools
- Stable tool core compared to round insert tools
- Tool extensions in steel, hard metal and heavy metal

Note

Thread milling

Comparison of thread mill and tap drill geometry

- Thread mills do not have a continuous pitch (spiral).
- The profile teeth are arranged behind each other.
- The pitch is established by the tool-machine combination.

Advantages of thread mills

- Exact thread depth
- No thread run-out
- Low cutting pressure, difficult to machine workpiece materials, process stability.
- · Reversing tool spindles not needed
- Thin-walled parts can be produced

Calculation of the correct thread mill diameter

1. Check the max. permissible profile distortion:

$$\Delta L = \frac{P^2 x r}{8 x \pi^2 x C xx(R-r) x R}$$

2. Determine the max. possible tool diameter D_c:

$$D_{c} = 2 x \left[\frac{\Delta L x 8 x \pi^{2} x C x R^{2}}{\Delta L x 8 x \pi^{2} x C x R x P^{2}} \right]$$

3. Determine the minimum core hole diameter D2 based on the specified tool diameter:

$$D_2 = 2 x \left[\frac{r}{2} + \frac{r^2}{4} + \frac{P^2 x r}{8 x \pi^2 x C x \Delta L} \right]$$

Process reliability

- Thread straightness is guaranteed
- No chip problems
- No eroding out of broken tools necessary

Reduction of down times One tool for:

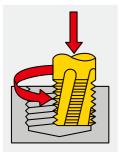
- · Different thread diameters with the same pitch
- Blind hole and through holes
- Right- and left-hand threads
- Various thread tolerances (6G, 6H, ...)

Max. permissible profile distortion	ΔL =max. 0,02mm
tool diameter	D _c
flank angle	W
$\tan \phi = C$	С
pitch	Р
core hole diameter	D ₂
0,2 x D ₂	R
profile height	h
0,2 x D ₂ x h	r

Appraisal

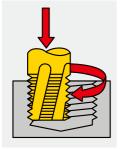
For coarse threads the reference value for the thread mill diameter is max. 2/3 of the hole diameter.

Example: M20 internal thread 20 mm x 0.66 = 13.2 mm (\emptyset 14 mm thread mill)


For fine pitch threads the factor 0.75 must be taken as a reference value.

Example: M20x1,5 internal thread 20 mm x 0.75 = 15 mm (\emptyset 15 mm thread mill)

Thread production with one tool


Left-hand thread

from top to bottom, climb milling

from bottom to top, conventional milling

Right-hand thread

from top to bottom, conventional milling

to bottom to top, climb milling

Axiale and radial infeeds during the thread milling process

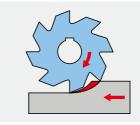
In general, the thread milling process should be conducted in a single infeed (productivity). Certain parameters, however, require that the thread is milled in several passes.

More radial infeeds for:

- Large overhand of the tool (radial deflection)
- Tapered (conical) thread
- Thin-walled parts
- Hardened materials
- Difficult to machine materials (austenite, inconel, titanium)

More axial infeeds for:

- Long threads (thread depth greater than the cutting edge length)
- Too much cutting pressure


Advantage of climb milling:

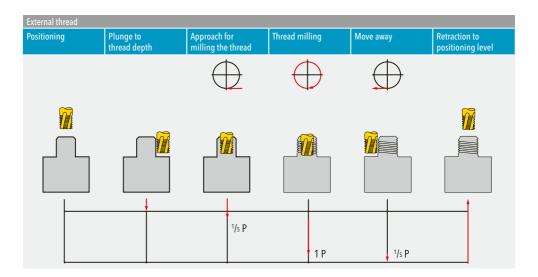
- Thread mill enters the cut immediately
- Protects the cutting edge against edge break-outs and flank wear

Advantages of conventional milling

- Better for filigree parts
- If the thread becomes conical with climb milling
- For smaller thread mill diameters

Important formulae

Variable	Unit	Formula
Speed of rotation	min ^{.1}	$n = \frac{v_c x 1000}{D x \pi}$
Cutting speed	m/min	$v_{c} = \frac{D x \pi x n}{1000}$
Feed rate	mm/min	$v_{f} = f_{z} x Z_{eff} x n$
Feed per tooth	mm	$f_{z} = \frac{v_{f}}{Z_{eff} x n}$
Average chip thickness	mm	$h_m = f_z x \sqrt{a_e/D}$
Main utilization time	min	$t_h = \frac{Lxi}{V_f}$



Thread milling

Thread milling processes

Internal thre	ead										
Positioning		Plunge to thread dep	th	Approach r thread mill	adius for ing	Thread mil	ling	Departing	radius	Retraction positionin	
				$\left\{ \right.$	$\left.\right\rangle$	¢	$ \geq $	$\left\{ \right.$			
-							1 P		¹ /4 P		
		,			¹/₄ P						

NOTE: A tapered (conical) internal thread is produced as shown above, on the hole is pre-machined conically.

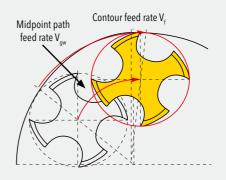
Correct tool clamping

The teeth of a thread mill are very filigree and delicate, therefore good concentricity (true running) of the thread mill is a must for producing threads.

Suitable clamping means are:

- Shrinking
- Hydro-expansion chuck
- Collet chuck (use collets with better true running 5µm) To achieve a good tool life, the true running accuracy should be within a range of 3 - 8 µm.

When milling threads attention must be paid to which path is being used for feed rate calculation purposes. Just like with circular interpolation milling, differentiation is made between countour path or midpoint path feedrate. This depends on the machine or its controller.


- D Thread diameter [mm]
- d Milling cutter diameter [mm]
- V_f Feed rate [mm]
- V_{an} Midpoint path feed rate for approach [mm/min]
- V_{gw} Midpoint path feed rate [mm/min]

Midpoint path feed rate calculation V_{aw}:

$$V_{gw} = \frac{Vf(D-d)}{D}$$

Midpoint path calculation for moving into the workpiece V_{an}:

v _	Vf(D-d)
v _{gw} —	D+d

Fault		Cause	Remedy
Tool breakage	Lummur -	 Feed rate too high Stability of the machine Chip jam Inclusions in the part High tool wear 	 Reduce the feed rate Reduce the cutting speed Change the strategy Adjust the feed rate Change the tool sooner
Vibrations		 Cutting speed too high Feed rate too low Stability of the machine Overhang too big (thread depth) 	 Adjust the cutting speed Increase the feed rate Adjust the cutting parameters Reduce the cutting speed
Poor surface quality		 Cutting speed too high/low Feed rate to high/low Wrong lubrication selected or no lubrication 	 Adjust the cutting speed Adjust / Recalculate the feed rate
Flank wear		 Cutting speed too high Feed rate too low Runout error Wrong lubrication selected or no lubrication 	 Reduce the cutting speed Increase the feed rate Check the runout Use a suitable cooling lubricant
Cutting edge breakage		Feed rate too highStability of the machineChip jam	 Reduce the feed rate Adjust the cutting parameters Check the coolant or tool type
Conical thread		 Feed rate too high Wrong strategy Tool clamping stability Tool not strong enough 	 Reduce the feed rate Check the strategy Use suitable clamping means Choose the most stable tool

Drilling

QUADDRILL	Diameters	Diameters achievable by radial adjustment of the drill				
Application:	2xD / 3xD / 4xD					
Medium to large bore diameter	drill Ø	max. rad. adjustment	max. drill Ø			
• For short hole depths up to 5xD	13	0,5	~14,0			
 For average tolerance requirements 	14	0,5	~15,0			
 Relatively flat bore bottom 	15	0,5	~16,0			
High stock removal rate	16	0,5	~17,0			
Easy adaptation of the cutting material	17	0,5	~18,0			
Boring application	18	0,5	~19,0			
bonng appreation	19	0,5	~20,0			
Diameter range:	20	0,5	~21,0			
QuadDrillPlus indexable drills:	21	0,25	~21,5			
• Diameter range 2xD: Ø 13–50 mm	22	0,5	~23,0			
 Diameter range 2,5xD: Ø 13 30 mm Diameter range 2,5xD: Ø 51–80 mm 	23	0,5	~24,0			
 Diameter range 2,3xD: Ø 31-00 mm Diameter range 3xD: Ø 12,5-60 mm 	24	0,5	~25,0			
 Diameter range 3,5xD: Ø 51–80 mm 	25	0,5	~26,0			
 Diameter range 4xD: Ø 13–50 mm 	26	0,25	~26,5			
 Diameter range 5xD: Ø 13-30 mm 	27	0,25	~27,5			
• Diameter range 5xD. @ 15-41 mm	28	0,5	~29,0			
QuadDrillPlus plunge mill:	29	0,5	~30,0			
 Diameter range Weldon version: Ø 10–48 mm 	30	0,5	~31,0			
 Diameter range werden version: Ø 10-40 mm Diameter range screw-in version: Ø 15-48 mm 	31	0,25	~31,5			
	32	0,25	~32,5			
QuadDrillPlus drill/plunge mill:	33	0,25	~33,5			
 Diameter range Weldon version: Ø 16–40 mm 	34	0,5	~35,0			
- Diameter lange weiden version. D To 40 mm	35	0,5	~36,0			
	36	0,5	~37,0			
	37	0,5	~38,0			
	38	0,5	~39,0			
	39	0,5	~40,0			
	40	0,25	~40,5			
	41	0,25	~41,5			
	42	0,5	~43,0			
	43	0,5	~44,0			
	44	0,5	~45,0			
		0,0	10,0			

To achieve the best performance and highest productivity, select the shortest possible drill

0,5

0,5

0,5 0,25

0,25

0,25

~46,0

~47,0 ~48,0

~48,5

~49,5

~50,5

45

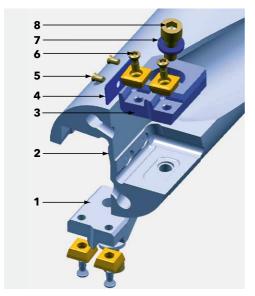
46

47

48

49

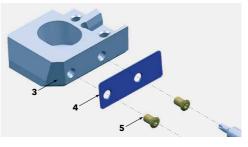
50



Cartridge drill:

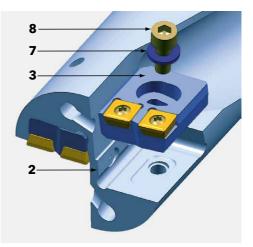
Each indexable cartridge drill covers a certain diameter range. This can be changed by adding and removing setting plates [4].

This option makes it possible to drill multiple diameters with one main body [2]. The diameter accuracy can be improved even more by changing the setting plate thickness.


No.	ltem	No.	ltem
1	Center cartridge	5	Clamping screw setting plate
2	Drill body	6	Insert screw
3	Peripheral cartridge	7	Washer
4	Setting plate	8	Clamping screw cartridge

Assembly of setting plate:

• Measure the correct setting plate [4]: 0,5 mm thickness = 1 mm bigger diameter Note: The smallest possible drilling diameter is achieved


without a setting plate!
Screw the setting plate [4] onto the peripheral cartridge [3] with the clamping screws [5]. Pay attention to the hole center distance!

Attention: The setting plate must not protrude after it has been installed!

Assembly of cartridge:

- Clean cartridge seats and cartridge [3].
- Place the cartridge [3] in the cartridge seat and press it against the contact areas.
- Slide the cartridge clamping screw [5] through the washer [7], then through the through hole in the cartridge [3] into the thread of the main body [2].
- Tighten the cartridge clamping screw [8].

Drilling

OUADTWIST

The QuadTwist drill uses a 4-edged insert that can be used in both center and peripheral pockets. This provides for effi cient stock keeping, thus reducing costs.

Furthermore, the unique insert design ensures ideal chip control and reduction of the cutting force. The effi cient, twisted fl utes and twisted, internal coolant supply ensure not only reliable chip evacuation during the drilling process, but also very good drilled hole surfaces.

Optimally arranged inserts provide for very good drilling results in carbon and alloyed steels, as well as in diffi cult to machine materials, including steel with low carbon content and structural steel.

The QuadTwist product line covers a diameter range of \emptyset 14.0 to \emptyset 50.0 mm and is available in the lengths 2xD, 3xD, 4xD and 5xD.

Available tools:

- in 1 mm increments in the lengths 2xD, 4xD and 5xD
- in 0.5 mm increments from Ø14 to Ø30 in the length 3xD.

Application features:

The Ingersoll QuadTwist drill series uses an economical, 4-edged insert which, in grades IN2505 or IN2530, can be used both as central insert and peripheral insert.

Coating	Picture	Desription
IN2530 (PVD)	۲	 Tough carbide For interrupted cuts and for break-outs in the center For medium cutting speeds
IN2505 (PVD)	۲	 First choice for general applications Multi-layer coating For medium to high cutting speeds
IN2510 (PVD)	۲	 Greater wear resistance Optimal drilling results in cast iron
IN6505 (CVD) (black surface)	٢	 Exceptionally wear-resistant sub-micron carbide For drilling in steel Can only be used in peripheral pockets For high cutting speeds
IN10K (Carbide)	Ô	 Excellent for drilling in aluminum Sharp cutting edge Reduced cutting forces at high cutting speeds

Inserts:

- Economical, 4-edged insert
- Same insert can be used for center and peripheral pockets

Chipping space:

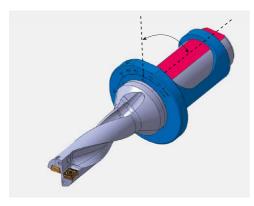
- Twisted coolant supply with large chip flutes
- Ideal chip evacuation thanks to optimized chip flutes

Notes:

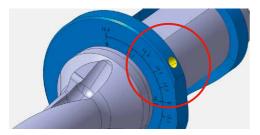
- The data given here are reference values only and may differ in your particular application.
- The optimal chip shape is produced by varying the cutting speed and feed rate.
- Refer to the catalog for information about the number of cutting edges (Z_{eff}).
- When the drill exits the workpiece, a disc is produced, which can be thrown out by rotating workpieces.
 Necessary precautions must therefore be taken!
- It is advisable to pre-calculate the required machine output and to synchronize it with the machine's actually available drive power.
- For drills with L/D = 5 use the lower feed rate; for drilling starter holes decrease to up to 50% of the lower feed rate.
- Ensure that adequate internal coolant is supplied to ensure reliable chip evacuation.

Eccentric Sleeve

Eccentric Sleeve for reducing or enlarging nominal drilling diameters.

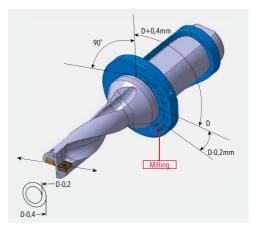

The sleeve can be used on machining centres, lathes and even misaligned turning centres. The eccentric sleeves come in four different standards – 20, 25, 32, and 40. They can be used for enlarging the nominal drilling diameter to max. +0.4mm and reducing the diameter to -0.2mm on milling machines. When used on lathes a maximum enlargement of +0.2mm can be achieved.

When using on a milling machine, refer to the "MILLING" scale on the frontal flange of the Eccentric sleeve. When using on a lathe, refer to the "LATHE" scale.


Please read the instructions thoroughly before using Ingersoll's Eccentric sleeves.

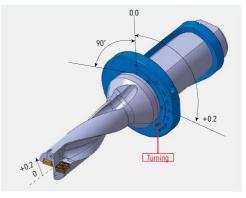
Adjustment

During initial setting ensure the flat on the eccentric sleeve coincides with the flat on the drill shank. (Both planes must be in parallel condition to each other)



To facilitate the rotation of the sleeve, a metal rod or a screw key may be inserted into the hole on the Eccentric sleeve flange. Unlock adapter screw before adjusting sleeve.

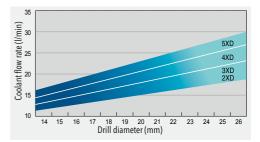
Milling application


On a milling machine the sleeve can change the drill's nominal diameter by shifting the drill's axis out of the tool spindle.

To enlarge the diameter, turn the sleeve clockwise & to reduce the diameter, turn sleeve counterclockwise as shown.

Lathe application

On a lathe, the Eccentric sleeve can shift the drill's axis to coincide with the spindle axis.


The eccentric sleeve enables the user to align the drill's axis with the spindle axis to within 0.2mm range (turn the sleeve counter clock wise to raise it).

Drilling

Possible diameters achievable by radial adjustment of the drill						
2xD / 3xD / 4xD						
Drill Ø	max. rad. adjustment	max. drill Ø				
12	+0,4	12,8				
13	+0,3	13,6				
14	+0,5	15,0				
15	+0,4	15,8				
16	+0,3	16,6				
17	+0,5	18,0				
18	+0,4	18,8				
19	+0,3	19,6				
20	+0,5	21,0				
21	+0,4	21,8				
22	+0,3	22,6				
23	+0,5	24,0				
24	+0,5	25,0				
25	+0,4	25,8				
26	+0,3	26,6				
27	+0,5	28,0				
28	+0,5	29,0				
29	+0,5	30,0				
30	+0,5	31,0				
32	+0,5	33,0				
31	+0,3	31,6				
33	+0,5	34,0				
34	+0,5	35,0				
35	+0,5	36,0				
36	+0,4	36,8				
37	+0,5	38,0				
38	+0,5	39,0				
39	+0,5	40,0				
40	+0,5	41,0				
41	+0,5	42,0				
42	+0,5	43,0				
43	+0,5	44,0				
44	+0,5	45,0				
45	+0,5	46,0				
46	+0,5	47,0				
47	+0,5	48,0				
48	+0,5	49,0				
49	+0,5	50,0				
50	+0,5	51,0				

Coolant:

Important:

Always provide adequate coolant for the internal coolant supply. Minimum pressure 8 - 10 bar.

Formulae

Variable	Unit	Formula
Machine rating	kW	$Pa = \frac{v_c x f x D x kc}{1000 x 60 x 4 x \pi}$
Feed force:	N	$Ff = 0.7 x \frac{D}{2} x f x kc$

Pa = Machine output in kW

kc = Specific cutting force in N/mm²

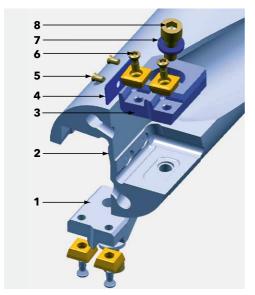
D = Diameter in mm

Vc = Cutting speed in m/min

 $\eta =$ Machine efficiency 0,7 – 0,8

SAFETY WARNING:

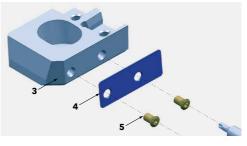
When the drill exits the workpiece, a disc drops off. Therefore there is a risk of accident in assocation with rotating workpieces! Necessary precautions must therefore be taken!



Cartridge drill:

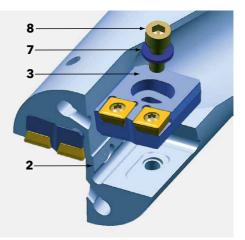
Each indexable cartridge drill covers a certain diameter range. This can be changed by adding and removing setting plates [4].

This option makes it possible to drill multiple diameters with one main body [2]. The diameter accuracy can be improved even more by changing the setting plate thickness.



No.	ltem	No.	ltem
1	Center cartridge	5	Clamping screw setting plate
2	Drill body	6	Insert screw
3	Peripheral cartridge	7	Washer
4	Setting plate	8	Clamping screw cartridge

Assembly of setting plate:


- Measure the correct setting plate [4]: 0,5 mm thickness = 1 mm bigger diameter Note: The smallest possible drilling diameter is achieved
- without a setting plate!
 Screw the setting plate [4] onto the peripheral cartridge [3] with the clamping screws [5]. Pay attention to the hole center distance!

Attention: The setting plate must not protrude after it has been installed!

Assembly of cartridge:

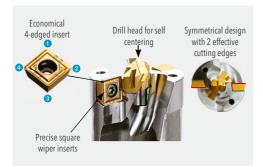
- Clean cartridge seats and cartridge [3].
- Place the cartridge [3] in the cartridge seat and press it against the contact areas.
- Slide the cartridge clamping screw [5] through the washer [7], then through the through hole in the cartridge [3] into the thread of the main body [2].
- Tighten the cartridge clamping screw [8].

Drilling

GOLDTWIN

Product overview

Ingersoll expands its BoreLine with the new GoldTwin drill, a combined interchangeable head and insert drilling system for holes with larger diameters.


The **GoldTwin drilling system** combines 2 types of drills, for one thing the interchangeable head system with solid carbide head and for another thing the indexable insert drilling system. The solid carbide head garantees an excellent self centering of the drill while the 4-edged insert with wiper-geometry improves the surface quality.

This combination gives an economic drilling system with 2 effective cutting edges for highest cutting performance. The drill body is designed with internal coolant supply, a hardened body for improved rigidity and induces high wear resistance due to the special surface post-treatment process.

The standard **GoldTwin drilling system** is available in diameter ranges from \emptyset 26 mm to \emptyset 45 mm in 1 mm steps and 5xD length. The solid carbide heads and inserts are provided in the established, high wear-resistant grade IN2505.

Advantages:

- 2 effective inserts for high cutting performance
- Precise 4-edge insert with wiper geometry
- High hole accuracy and excellent surface quality
- Excellent chip control
- · Improved body rigidity
- Very economical solution
- Drill diameter: Ø 26 mm up to Ø 45 mm / drilling depth 5xD

Construction of drill bit:

Technical Informations:

GOLD 7 WYDN Modular drill system

Product overview

The modular type GoldTwin line provides superior machining and excellent hole quality for hole machining of 26 mm diameter and above, as well as improved productivity due to the symmetric design which reduces tool cost, yet expands the range of GoldTwin applications.

Advantages:

- Unique cutting edge design improves self-centering and hole straightness
- TPAxxxxR01-C will be phased out when stock is sold-out
- Excellent surface roughness due to an insert with a wiper area
- Improved machining stability due to its dedicated guide pads
- Modular body changes enable 3xD and 5xD machining

Technical features

By assembling a modular holder that fits the depth of the hole into a single modular head, the new offering is able to maintain high-feed machining and quality. It also reduces tool cost by only requiring the modular head be removed when changing the tool.

In the center of the modular head, a new uniquely designed head (TPCxxxxR01-C) has been applied with a self-centering capability to improve the hole straightness. In addition, the exterior inserts with wiper (SPGX-WG) and dedicated guide pads provide excellent surface roughness.

Modular head replacement instructions

 Remove both outer inserts, then remove the center drill head. (When clamping, go in the reverse order)

2. Use a wrench to turn the screw counter-clock-wise to remove the modular head.

3. Insert the setting gauge into the bottom of the disconnected modular head.

4. Rotate the screw to adjust to the same height as the setting gauge.

 Setting gauge

 Drill dia.
 Designation

 D26-D29
 SG CD26-29-TP

 D30-D35
 SG CD30-35-TP

 D36-D39
 SG CD36-39-TP

 D40-D43
 SG CD40-43-TP

 D44-D50
 SG CD44-50-TP

5. Remove the height adjusted modular head from the setting gauge and attach it to the holder.

Modular head disassembly in the event of center drill damage If the modular head cannot be unclamped due to center drill

If the modular head cannot be unclamped due to center drill damage, insert the wrench into the rear section of the shank. Then, turn it clock-wise to disassemble the modular head.

Disassembling wrench and handle are included with the modular drill body.

Damaged center drill

SPADETWIST

Product overview

The SpadeTwist drill with optimized cutting edge geometry and unique, very robust clamping system provides the greatest productivity and outstanding performance. The unique clamping technology allows the drill head to be changed quickly, without having to fi rst remove the clamping screw. This reduces the tool setup time and also the machine down times.

The SpadeTwist drill line is available as a standard tool in the length-to-diameter ratios of 3xD and 5xD in a diameter range of 26.0 mm to 41.0 mm in 0.5 mm increments.

Drill head

The asymmetrical pocket design guarantees error-free mounting of the drill head, thus increasing the tool precision and tool change accuracy.

Wide contact area

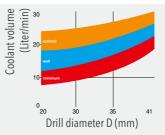
Standard helix angle

asymmetrical insert pocket

error-free mounting

Product features:

- Unique, quick-change clamping system
- 2 Effective cutting edges for the greatest productivity
- · Self-centering geometry
- Easy change of the drill head at the machine
- Asymmetrical insert pocket for error-free mounting, high precision and excellent surface fi nish
- High rigidity of the unique clamping system means greater productivity
- Internal coolant supply
- Diameter range:
- Ø 26.9 mm to 41.0 mm in 0.5 mm increments
- Length-to-diameter ratio of the tool body: 3xD and 5xD
- · Semi-standard tools available on request



To unclamp, turn the clamping screw 3 to 5 turns counterclockwise

No need to remove the screw from the shank body

GOLDTWIST

General information

The Ingersoll Gold-Twist product line is the next generation of interchangeable head drilling systems. The new design is a standard product line and covers a diameter range of Ø 7.0 mm to Ø 25.9 mm in increments of 0.1 mm and is available in length/ diameter (L/D) ratios of 1.5xD, 3xD, 5xD and 8xD. The L/D ratio of 12xD is available in the diameter range Ø12 mm to Ø 22.9 mm.

Product Description

The precision drill bodies have an improved interface with an innovative clamping system, which guarantees reliable clamping even after many changes of the tips. These drill bodies also offer twisted coolant holes, polished flutes and a PVD coating, which ensures easy chip evacuation and extends the serviceable life of the body. Depending on its diameter, each body can cover a diameter range of between 0.5 mm - 1 mm.

The IN2505 grade, solid carbide, interchangeable heads provide an excellent PVD coating, improved wear resistance and longer serviceable life for many different applications. Cutting edge geometries are available for machining general purpose steel (TPA), for machining cast iron (TKA) and for machining stainless steels (TMA).

Application features

The Ingersoll Gold-Twist drill line provides excellent results in applications with higher cutting speeds and offers a unique, robust, quick-change clamping system. The result is a product for your drilling application, which combines cost efficiency with a high productivity.

Product features

- The precision drill bodies have an innovative clamping system with excellent stability to guarantee reliable clamping.
- The system is characterized by its ease of use.
- The drill bodies have twisted coolant holes, polished flutes and a PVD coating, which guarantees good chip evacuation and a long serviceable life of the body.
- Depending on its diameter, each body can cover a diameter range of between 0.5 mm - 1 mm.
- The IN2505 grade, solid carbide, interchangeable drill heads are offered in 0.1 mm increments in P, M, and K geometries with an excellent PVD coating. This ensures a high wear resistance and longer serviceable life for many applications.

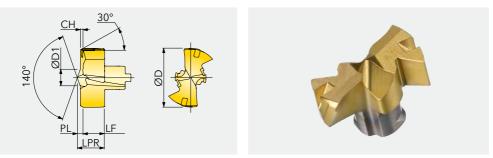
Technical information

Depending on its diameter, each body covers a diameter range of between 0.5 mm - 1 mm.

Advantages

- High productivity
- Exceptionally economical
- Innovative drill head clamping system
- Twisted and polished flutes
- Twisted coolant holes
- Excellent chip evacuation

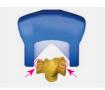
Notes & tips


- When the drill exits the workpiece, a disc is produced which can be thrown out by rotating workpieces.
 Please take suitable precautions!
- When drilling through holes, make sure that the drill tip remains guided when the drill exits the workpiece.
- For drills with L/D = 8 and 12, use the lower feed rate; for drilling starter holes, decrease to up to 50% of the lower feed rate.
- For drills with L/D = 8 and 12, use a pilot hole, if necessary

Application of drill heads

Drill head	Picture	Geometry for
TPA_R01		general purpose steel
TMA_R01		stainless steel
TKA_R01		cast iron
TPF_R01		flat hole bottom
TPA_R01-M2		double guide chamfer
TNA_R01	MP.	aluminum

Drill head dimensions for a level hole bottom


Designation	D	D1	LPR	t	PL	LF	СН	Bs
TPF0800R01	8	1,2	4,4	4	1,09	3,3	0,7	8
TPF0850R01	8,5	1,2	4,4	4	1,09	3,3	0,7	8
TPF0900R01	9	1,21	4,6	4,2	1,11	3,5	0,7	9
TPF0950R01	9,5	1,21	4,6	4,2	1,11	3,5	0,7	9
TPF1000R01	10	1,27	4,9	4,4	1,17	3,7	0,7	10
TPF1050R01	10,5	1,27	4,9	4,4	1,17	3,7	0,7	10
TPF1100R01	11	1,49	5,1	4,5	1,25	3,8	0,7	11
TPF1150R01	11,5	1,49	5,1	4,5	1,25	3,8	0,7	11
TPF1200R01	12	1,5	5,4	4,8	1,26	4,1	0,7	12
TPF1250R01	12,5	1,5	5,4	4,8	1,26	4,1	0,7	12
TPF1300R01	13	1,64	5,7	5,1	1,3	4,4	0,7	13
TPF1350R01	13,5	1,64	5,7	5,1	1,3	4,4	0,7	13
TPF1400R01	14	1,68	6,1	5,5	1,31	4,8	0,7	14
TPF1450R01	14,5	1,68	6,1	5,5	1,31	4,8	0,7	14
TPF1500R01	15	1,78	6,6	5,9	1,35	5,23	0,7	15
TPF1550R01	15,5	1,78	6,6	5,9	1,35	5,23	0,7	15
TPF1600R01	16	1,89	7	6,3	1,39	5,6	0,7	16
TPF1650R01	16,5	1,89	7	6,3	1,39	5,6	0,7	16
TPF1700R01	17	1,91	7,3	6,6	1,4	5,9	0,7	17
TPF1750R01	17,5	1,91	7,3	6,6	1,4	5,9	0,7	17
TPF1800R01	18	1,97	7,6	6,9	1,42	6,18	0,7	18
TPF1850R01	18,5	1,97	7,6	6,9	1,42	6,18	0,7	18
TPF1900R01	19	1,96	7,9	7,2	1,44	6,5	0,7	19
TPF1950R01	19,5	1,96	7,9	7,2	1,44	6,5	0,7	19
TPF2000R01	20	3,42	9,3	8,2	1,77	7,5	0,7	20
TPF2050R01	20,5	3,42	9,3	8,2	1,77	7,5	0,7	20
TPF2100R01	21	3,6	9,7	8,6	1,79	7,9	0,7	21
TPF2150R01	21,5	3,6	9,7	8,6	1,79	7,9	0,7	21
TPF2200R01	22	3,8	10	8,9	1,81	8,2	0,7	22
TPF2250R01	22,5	3,8	10	8,9	1,81	8,2	0,7	22
TPF2300R01	23	3,9	10,4	9,3	1,83	8,6	0,7	23
TPF2350R01	23,5	3,9	10,4	9,3	1,83	8,6	0,7	23
TPF2400R01	24	4,1	10,9	9,7	1,86	9	0,7	24
TPF2450R01	24,5	4,1	10,9	9,7	1,86	9	0,7	24
TPF2500R01	25	4,3	11,3	10,1	1,89	9,4	0,7	25
TPF2550R01	25,5	4,3	11,3	10,1	1,89	9,4	0,7	25

Mounting of drill heads

1. Clean the pocket and apply oil.

3. Insert the keys into the slots at the drill head

27

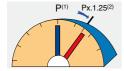
2. Mount the drill head on the pocket

3. Secure the drill head into place by turning clockwise

Max. runout error

Drilling limitation

Inclined surface

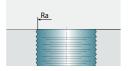

Stationary runout

Max' 0.02mm

Cross hole

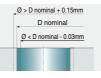
Types of wear

Power limit



(1) new drill head (2) worn drill head

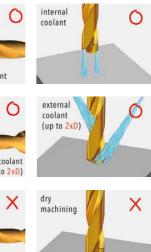
Wear limit

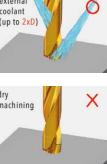

Surface deterioration

Vibrations or noise increase dramatically

Change in diameter

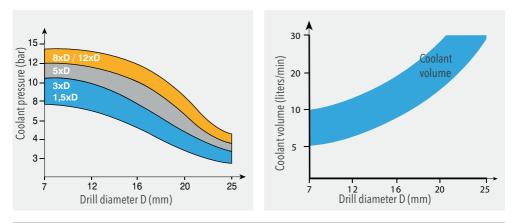
Coolant recommendations


Lathes

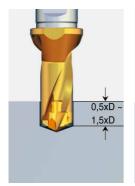


Machining center

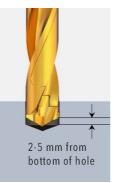
dry machining



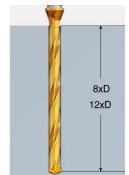
GOLDTWIST


Coolant supply

Recommended coolant pressure (bar)


Recommended coolant volume (liters/min)

Recommended procedure for long drills, such as 8xD and 12xD


1. When using longer drills, such as 8xD and 12xD, it is advisable to drill a pilot hole of 0.5xD to 1.5xD.

2. Feed the drill into the pilot hole until 2mm above the bottom of the hole at reduced cutting speed.

 Switch on the internal coolant supply 2 to 3 sec. before starting the drilling operation, set the required rotation speed and feed rate.

4. Drill continuously using the recommended cutting data

Product overview

The new tap drills with integrated chamfer step are an addition to our Ingersoll GoldTwist product line. The tools can be used to produce 45° chamfered through-holes and blind holes and for producing holes with a 45° countersink.

The tools feature the tried and tested GoldTwist interchangeable tip system and the interchangeable chamfering inserts.

The tap drills can be used for metric thread sizes M10 to M24.

Advantages

step, 2 machining steps can be consolidated into one for more economic machining.

Thanks to the combination of the tap drill and the chamfer Furthermore, the re-grinding and high stock-keeping costs associated with the use of solid carbide drills are eliminated

Apllications

Drilling with 45° chamfer:

Blind hole

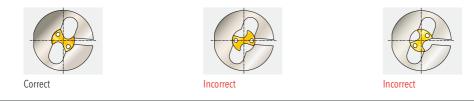
Drilling with 45° countersink

Blind hole

Through hole

Through hole

- 1. Slide the chamfer ring onto the drill body; the limit stop must be within the flute.
- R.
- 2. Slide the chamfer ring to the required position.



4. Fasten the chamfer ring into place and mount the drill tip

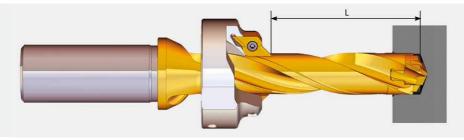
The flutes of drill and chamfer ring must be properly aligned

STABLE MACHINING

Always use a short tool, if possible. If not possible, reduce the cutting speed to minimize vibrations.

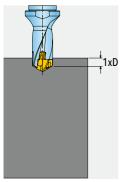
Mount the chamfer ring as close to the drill shank as possible

For a better tool life, use internal and external coolant.

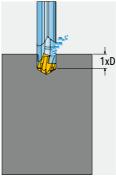


When mounting the chamfer ring, make sure that the coolant flow is not impeded.

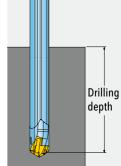
Min. and max. length GoldTwist with chamfer ring


	Designation duill	Designation	Len	gth		Designation duill	Designation	ion Length		
	Designation drill	chamfer ring	min.	max.		Designation drill	chamfer ring	min.	max.	
	TD1300039JDR00	CB130R02	19	19		TD1000080JDR00	CB100R02	45	58	
	TD1350040JDR00	CB135R02	19	20		TD1050084JDR00	CB105R02	49	62	
	TD1400042JDR00	CB140R02	21	22		TD1100088JDR00	CB110R02	49	66	
	TD1450043JDR00	CB145R02	22	23		TD1150092JDR00	CB115R02	53	70	
	TD1500045JER00	CB150R02	23	23		TD1200096JDR00	CB120R02	53	74	
	TD1600048JER00	CB160R02	24	25		TD1250100JDR00	CB125R02	57	78	
	TD1700051JER00	CB170R02	26	28		TD1300104JDR00	CB130R02	57	82	
3D	TD1800054JFR00	CB180R02	27	30		TD1350108JDR00	CB135R02	61	84	
	TD1900057JFR00	CB190R02	29	33		TD1400112JDR00	CB140R02	61	88	
	TD2000060JFR00	CB200R02	30	36		TD1450116JDR00	CB145R02	65	92	
	TD2100063JFR00	CB210R02	32	39	8D	TD1500120JER00	CB150R02	65	96	
	TD2200066JFR00	CB220R02	33	42		TD1600128JER00	CB160R02	69	103	
	TD2300069JGR00	CB230R02	35	45		TD1700136JER00	CB170R02	73	111	
	TD2400072JGR00	CB240R02	36	48		TD1800144JFR00	CB180R02	77	118	
	TD2500075JGR00	CB250R02	38	51		TD1900152JFR00	CB190R02	81	126	
	TD1000050JDR00	CB100R02	28	28		TD2000160JFR00	CB200R02	85	134	
	TD1050052JDR00	CB105R02	29	30		TD2100168JFR00	CB210R02	89	142	
	TD1100055JDR00	CB110R02	31	33		TD2200176JFR00	CB220R02	93	150	
	TD1150057JDR00	CB115R02	32	35		TD2300184JGR00	CB230R02	97	158	
	TD1200060JDR00	CB120R02	33	45		TD2400192JGR00	CB240R02	101	166	
	TD1250062JDR00	CB125R02	34	40		TD2500200JGR00	CB250R02	105	174	
	TD1300065JDR00	CB130R02	36	43		TD1200144T3R00	CB120R02	87	121	
	TD1350067JDR00	CB135R02	37	43		TD1250150T3R00	CB125R02	90	127	
	TD1400070JDR00	CB140R02	38	48		TD1300156T3R00	CB130R02	93	133	
	TD1450072JDR00	CB145R02	39	48		TD1350162T3R00	CB135R02	96	137	
5D	TD1500075JER00	CB150R02	41	53		TD1400168T3R00	CB140R02	99	142	
	TD1600080JER00	CB160R02	43	58		TD1450174T3R00	CB145R02	102	149	
	TD1700085JER00	CB170R02	46	63		TD1500180T4R00	CB150R02	105	155	
	TD1800090JFR00	CB180R02	48	68	12D	TD1600192T4R00	CB160R02	111	166	
	TD1900095JFR00	CB190R02	51	73		TD1700204T4R00	CB170R02	117	178	
	TD2000100JFR00	CB200R02	53	78		TD1800216T5R00	CB180R02	123	189	
	TD2100105JFR00	CB210R02	56	79		TD1900228T5R00	CB190R02	129	201	
	TD2200110JFR00	CB220R02	58	84		TD2000240T5R00	CB200R02	135	213	
	TD2300115JGR00	CB230R02	61	89		TD2100252T5R00	CB210R02	141	225	
	TD2400120JGR00	CB240R02	63	94		TD2200264T5R00	CB220R02	147	237	
	TD2500125JGR00	CB250R02	66	99						




Drill Penetration Instructions on Milling or Turning Machines

The following procedure (1-4) is recommended for up to 400 mm hole depths using 400mm drills. For hole depths between 400 up to 800 mm, use 800mm drill only after reaching 400 mm depth with an 400mm drill.

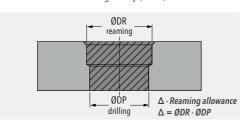


- 1. Drill a pilot hole 0.5xD deep with a short drill in the same diameter as for the GoldTwist drill
- 2. Enter the pre-hole at slow speed, feed, and 50 RPM until 1-2 mm before reaching the bottom.

3. Activate the cooling system and increase rotation speed to recommended drilling speed, maintain for 2-3 seconds, then continue at recommended drilling feed. No pecking is required. Apply maximum possible coolant flow rate

4. After having reached the required depth, reduce speed to 50-100 RPM while exiting from the hole.

Reamer



front end configuration code	ß°	a [mm]	g°	b [mm]		a a
A	45°	0,5				
В	25°	1,07				
С	45°	0,5	8°	0,75		ů time l
D	30°	0,5	4°	1,85		
E	45°	0,2	-			ĉ
F	90°				u	
G	75°	0,15	-			
Х	special desig	n (no definitio	n)			~

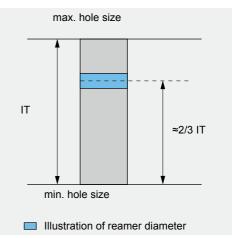
Béli ele s Alessi al plæire an Regi bial si en stæst avit hui che joree Anlsed nigt open et et vielzig i wiakten a given die offet berne avit de stander of the second standard of

Additional grades (on request):

- IN60C: Cermet-tipped, recommended for reaming in the following materials: Unalloyed steel, low-alloy steel, free-cutting steel, as well as spheroidal graphite cast iron.
- IN91D (PCD): Recommended for high-speed reaming of aluminum (special applications).
- IN3305 (DLC-coated): Recommended for reaming in the following materials: Cast aluminum and wrought alloys, brass, bronze and non-ferrous materials.

Hole Ø	11,5-13,5	13,5-16	16-32	
Material				
Steel and cast iron	0,10 - 0,20	0,10 - 0,30	0,10 - 0,30	mm / Ø
Aluminum and brass	0,15 - 0,25	0,20 - 0,30	0,20 - 0,40	mm / Ø

Specification


Basic design	
Diameter range:	Ø11,5 bis Ø32,0 mm
Available diameters:	Full millimeter sizes
Accuracy::	Borehole tolerance H7
Grades:	IN05S und IN2005
Available shanks:	3xD, 5xD und 8xD
Shank material:	Steel

Special Diameter range: diameter sizes: Accuracy:: Grades:

Available shanks:

Shank material:

Ø11,5 bis Ø32,0 mm On request ISO IT6 und höher IN05S, IN2005, IN91D IN3305 and IN60D On request Steel, carbide, heavy metal

Reamer head diameter & machining concept

Reamer

Technical advantages

- High cutting speeds and feed rates (for increased productivity)
- High true-running accuracy (runout max. 3 µm)
- No setup times
- One shank can be used for a range of diameters and with different cutting edge types and grades
- High repeatability (max 3 µm)
- Durable due to the combination of a solid carbide head and a flexible steel shank
- No risk of losing any clamping parts which may fall during indexing
- Suitable for almost dry machining (minimum quantity lubrication)
- The internal coolant supply is directed optimally to the cutting edges, thus ensuring extremely efficient lubrication of the head and a very long tool life

Initial setup

- 1. Clean the locating hole in the shank (Fig. 1).
- 2. Clean the taper of the new reaming head.
- 3. Insert the clamping screw into the shank and turn it 2-3 turns clockwise (Fig. 2).
- 4. Put the reaming head onto the screw. Attention! BN8 and BN9 can only be mounted onto the screw in one position (turn the head until the correct position is reached) (Fig. 3).
- 5. Manually turn the head until is sits securely in the locating hole.
- 6. Hold the clamping key with one hand and tighten the head until the limit stop is reached. To apply the necessary torque, each BN size has its own clamping key (Fig. 4) (the shank should be clamped in an adapter).
- 7. Make sure that the contact faces of the shank and the reaming head are in full contact with each other! (Fig. 5).

Attention:

Cutting tools can break off during mounting. To prevent injury, personal protection gear, such as protective gloves, safety mask and safety goggles must be worn.

Exchanging the head

- 1. Loosen the reaming head by turning it counterclockwise with the clamping key until the head turns freely. Remove the reaming head from the tool. The clamping screw should remain inside! Clean the locating hole of the shank (Fig. 1).
- 2. Clean the taper of the new reaming head.
- 3. Put the reaming head onto the screw. Attention! BN8 and BN9 can only be mounted onto the screw in one position (turn the head until the correct position is reached) (Fig. 3).
- 4. Turn the reaming head clockwise by hand. At the beginning the head turns without the screw, but after 1/6th of a turn, it should mesh into the thread.
- 5. Keep turning the head until it sits securely in the locating hole. If the screw turns together with the reaming head from the very start, remove the reaming head and unscrew the screw one more turn.
- 6. Hold the clamping key with one hand and tighten the head until the limit stop is reached. To apply the necessary torque, each BN size has its own clamping key (Fig. 4) (the shank should be clamped in an adapter).
- 7. Make sure that the contact faces of the shank and the reaming head are in full contact with each other! (Fig. 5).

Applications

Through hole Left-handed flute

The left-handed flute has been specially designed for through-hole reaming. With this design, the chips are immediately pushed forward as soon as they are produced.

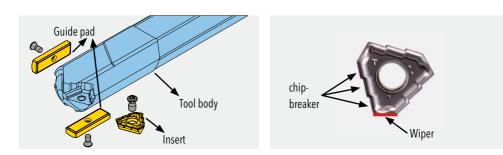
Blind Hole Straight flute

The coolant flow helps evacuate the chips. It carries the produced chips backwards. The chips run through the straight flutes and are discharged from the hole without damaging the reamer and the surface of the hole.

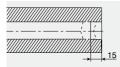
Heads with straight flutes are also used for drilling through-holes in short-chipping materials (cast iron).

Troubleshooting

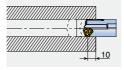
Problem	Cause	Remedy
Hole is too big	 Reamer or pilot hole not centered Reamer too big Cooling/lubrication error 	 Insert a floating chuck or correct the pilot hole Check the size of the reamer; correct it if necessary Change the lubricant and increase the coolant pressure
Hole is too small	 Reamer is worn Insufficient reaming allowance Cooling/lubrication error 	 Change the reamer Increase the reaming allowance Change the lubricant and increase the coolant pressure
Tapered hole (wider at the bottom)	 Center of the pilot hole and the reaming head incorrectly aligned 	• Re-align or use a floating chuck
Tapered hole (wider at the top)	 Center of the pilot hole and the reaming head incorrectly aligned Material jammed between the reamer and the hole in the top section of the hole 	 Re-align or use a floating chuck Axially fasten the tool
Poor surface finish	 Reamer is worn Center of the pilot hole and the reaming head incorrectly aligned Chip evacuation problem Incorrect machining parameters Burr formation 	 Change the tool Re-align or use a floating chuck Increase the coolant pressure Change the machining parameters Change the machining parameters or increase the coolant supply

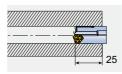


DEEPTTRIO


Product overview

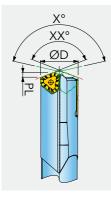
The DeepTrio deep hole drill is available in a diameter range of Ø 16 mm to Ø 28 mm and in the lengths 10xD, 15xD and 25xD.


The insert has 3 cutting edges, with chipbreaker and wiper geometry. They come in the tried and tested, wear-resistant IN2005 grade. The tools are ideally guided by interchangeable guide pads and have internal coolant supply.


Drilling process

Drill a pilot hole D (+0.03 / +0.10) 15 mm deep.

Feed the drill 10 mm deep into the pilot hole at a low speed of rotation (approx. 50 rpm) and at a low feed rate. Start the coolant and set the required cutting speed.



Use approx. 80% of the required feed rate up to a depth of 25 mm, then increase the feed rate to 100%.

For through holes, drill approx. 5 mm deeper, reduce the speed of rotation to approx. 50 rpm and withdraw from the hole.

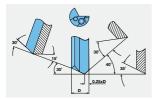
Point angle

ØD	X°	XX°	PL	Insert	ØD	X°	XX°	PL	Insert
14	154°	137°	2	TPHT070304R	19,5	154°	137°	3	TPHT090305R
14,5	154°	137°	2	TPHT070304R	20	155°	137°	3	TPHT090305R
15	154°	137°	2	TPHT070304R	21	154°	139°	3,2	TPHT100305R
16	155°	140°	2,2	TPHT080305R	22	154°	140°	3,4	TPHT110405R
16,5	155°	140°	2,2	TPHT080305R	23	154°	140°	3,4	TPHT110405R
17	154°	138°	2,2	TPHT080305R	24	154°	140°	3,4	TPHT110405R
17,5	154°	138°	2,2	TPHT080305R	25	154°	140°	3,4	TPHT110405R
18	154°	138°	2,2	TPHT080305R	26	154°	140°	3,4	TPHT110405R
18,5	154°	137°	3	TPHT090305R	27	154°	141°	3,6	TPHT120405R
19	154°	137°	3	TPHT090305R	28	154°	141°	3,6	TPHT120405R

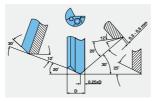
Single flute brazed gun drills

Solid carbide deep hole drill

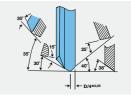
Diameter range: Ø 1.4 mm to Ø 16 mm Lengths: 40 x drill diameter up to 200 mm flute length


Carbide driver and carbide cutting tip

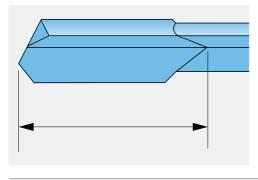
The drill head and the extension tube are produced from one piece of solid carbide. The driver may be made of steel or carbide.


The solid carbide gun drill is designed for use in conventional machining centers and lathes. These drills provide superior rigidity with optimum coolant flow. As a result, speeds and feeds up to 100% faster may be obtained.

Standard gun drill sharpening angles

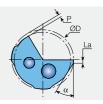

Depending on the required tolerances, cutting performance and the desired chip shape, the following standard sharpening angles are recommended.

Standard sharpening for diameters less than 4.0 mm


Standard sharpening for diameters greater than 4.0 mm

Optional sharpening for materials where it is difficult to break a chip.

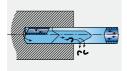
Standard gun drill carbide length

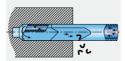

Diameter range	Head length
2,50-3,80	20
3,80-4,05	23
4,05-5,05	25
5,05-6,55	30
6,55-11,05	35
11,05-18,35	40
18,35-21,35	45
21,35-23,35	50
23,35-26,35	55
26,35-32,00	65

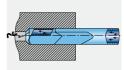
Re-grindable length = length-dia.

Standard gun drill pad forms

Drilling capacity and hole finish are dependent on the geometrical shape of the drill head. Both the pad form and the sharpening must be matched to the workpiece material. The pad form is determined when the tool is manufactured. Regrinding may change the cutting geometry, but the pad form will remain the same.

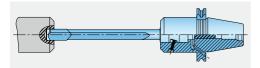

All of the cross section profile parameters, such as P, La and α must be precisely matched to the workpiece material properties

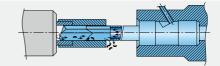

Universal G-form	Standard A-form	Standard B-form	Standard C-form
For all material groups. Works well in materials that tend to shrink. Maintains precision bore tolerance and straightness.	For cast iron & aluminum alloys (coated). Drilling through cross holes and angled entry and exits. Large gap between pads ensures good lubrication.	For cast iron & aluminum alloys. Maintains high precision hole tolerances. Excellent surface finish.	With larger back taper for use in materials that tend to shrink (some alloys and stainless). Drilling through cross holes and angled entry and exit. Not recommended for precise straightness control.
Standard D-form	Standard E-form	Standard E-form	Standard I-form
For cast iron only (with coating). Works very well in gray cast iron.	General purpose for all materials. Commonly used in crankshaft and other forged materials.	For all non-ferrous materials. For cast iron for hole diameters greater than 5 mm. Can be used for wood and plastic, with a larger back taper.	For aluminum and brass when best surface finish is required. Can be used in cross hole and interrupted cut applications


Applications

Gun drilling operation in a blind hole when chips and coolant are evacuated back through the flute.

Stepped gun drill boring operation in blind hole when chips and coolant are evacuated back through the flute.


Gun drill boring operation in through hole when chips and coolant are evacuated ahead of the drill tip.


Stepped gun drill boring operation in through hole when chips and coolant are evacuated ahead of the drill tip.

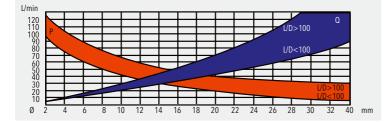
Gun drills in machining centers

- Insert the deep hole drill into the pilot hole either with the drill at a standstill or rotating at a low speed (n < 50 rpm)
- Switch on the coolant
- Set the nominal speed of rotation
- Drill until the drilling depth is reached, for blind holes, withdraw slightly (1 2 mm)
- Stop the rotation or set a low speed of rotation (n < 50 rpm)
- Withdraw from the hole

Centering/guiding hole for gun drill operation in machining center

Bushing guide barrel for gun drill stabilizing in machining center

Coolant pressure and volume

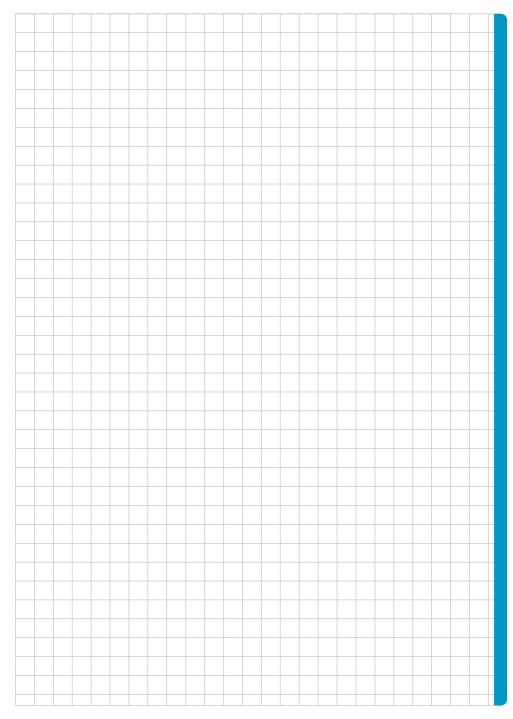

The correct coolant Use oil rather than drilling emulsion when possible

Pure oil

- · Oil is used on most conventional deep hole drilling machines
- Provides the best possible lubrication, better tool life and surface finish
- No problem getting the concentration right and no evaporation

Drilling emulsion

• Used on most machining centers


Poor < 8% Acceptable 10-12% Good 12-15%

Troubleshooting

	D	rill pı	obler	ns								Hol	e pro	obler	ns		
Possible causes	(raterio	Built-un edue	Damaged wear pad	Flute bending	Drill heat	Excessive flank wear	Excessive corner wear	Excessive margin wear	Poor drill life	Chipping	Drill breakage	Curved hole axis	Conical entrance	Runout	Rough surface finish	Undersized hole	Oversized hole
Poor clamping								+			+	+		+			+
Insufficient coolant flow					+	+			+		+				+		+
Low coolant pressure									+		+				+	+	
Incorrect coolant type	+	+	+			+	+	+	+						+		
Feed fluctuations		+		+					+	+	+	+		+	+		
Too high feed	+	+		+	+	+			+		+	+	+	+	+		+
Too low feed		+							+	+		+					
Spindle speed too high			+	+	+	+	+	+	+		+						
Spindle speed too low	+	+													+		
Material structure	+	+	+				+		+	+	+	+		+			
Material shrinking due to heat			+		+		+		+		+			+	+	+	
Workpiece thin wall section									+		+	+		+			
Misalignment			+	+		+		+	+		+	+		+			+
Undersized hole			+		+	+		+	+		+				+		
Rough cutting edge finish	+	+					+		+	+	+	+		+			
Built-up edge							+		+		+				+		+
Worn out cutting edge	+	+					+	+	+	+	+	+		+	+		
Interrupted chip flow			+	+		+		+	+		+	+		+	+		+
Too small flute clearance			+		+	+		+	+	+		+		+			
Incorrect drill profile	+	+	+	+			+	+	+		+	+		+	+	+	+
Incorrect head angles	+	+		+		+	+		+	+	+	+	+		+	+	+
Vibrations	+	+	+	+			+		+	+	+	+	+	+	+		+
Oversized bushing									+		+	+	+	+			+
Gap between bushing and workpiece						+			+		+	+	+	+	+	+	+
Bushing undersized			+	+		+		+	+		+			+		+	
Loss of coolant pressure		+	+	+	+				+		+		+		+	+	
High coolant pressure												+					+
Overheating coolant	+		+		+	+	+	+	+						+		
Insufficient coolant	+	+	+	+	+				+		+	+		+	+		+
Head inside angle excessive wear			+	+					+					+	+		+
Head outside angle excessive wear		+		+			+		+					+	+	+	
Too short carbide head	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+
Tool heel drag			+	+	+	+		+	+		+	+		+	+		+
Worn supporting pads	+		+	+	+		+		+		+			+			+
Tool whip - reverse tool rotation	+	+	+	+			+		+	+	+			+	+		+

Note

Ingersoll Cutting Tools Marketing & Technology

Germany Ingersoll Werkzeuge GmbH

Kalteiche-Ring 21-25 35708 Haiger, Germany Phone: +49 2773 742-0 Fax: +49 2773 742-812 Email: info@ingersoll-imc.de Internet: www.ingersoll-imc.de

USA

Ingersoll Cutting Tools

845 S. Lyford Road Rockford, Illinois 61108-2749, USA Phone: +1-815-387-6600 Fax: +1-815-387-6968 Email: info@ingersoll-imc.com Internet: www.ingersoll-imc.com

France Ingersoll France

22, rue Albert Einstein F-77420 CHAMPS-sur-MARNE Phone: +33 164684536 Fax: +33 164684524 Email: info@ingersoll-imc.fr Internet: www.ingersoll-imc.fr

www.ingersoll-imc.de

