

NEW WINCUT SLOTTING CUTTERS IN MODULAR DESIGN

- Standard tools in diameters Ø80, Ø100, Ø125 and Ø160 mm
 - Cutting widths 2 mm and 3 mm •
 - Strong cutting edges for maximum productivity
 - Precisely directed internal coolant supply •
 - Designed with flat front and free of interfering contours •

SLOTTING CUTTERS SSC

Product Overview

Ingersoll expands its standard program with slotting and disc milling cutters in Ø80, Ø100, Ø125 and Ø160 mm based on our **WinCut** cutting inserts (**SFC** / **SFJ**).

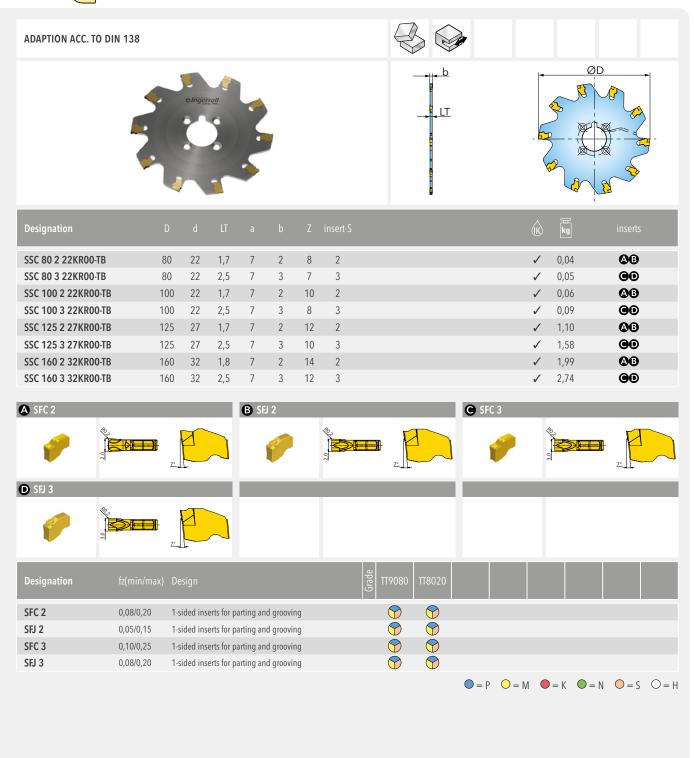
These inserts available in cutting widths of 2 and 3 mm are already used in our parting and grooving tools.

The new product line differs from conventional systems in particular due to the internal coolant supply and the very stable insert seat.

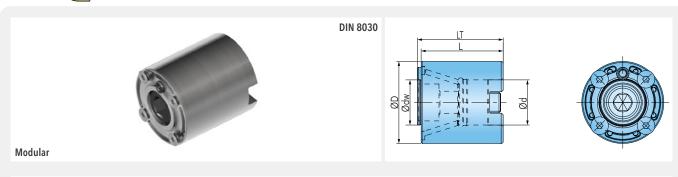
The modular design allows for a certain degree of flexibility and - if necessary - a guick change of the milling cutter.

Technical Features & Advantages

In addition to the pinpointed internal coolant supply and the design with a flat front and no interfering contours, the **WinCut** insert known from our cut-off blades are a guarantee for excellent productivity and process reliability.


The form-fitting insert seat allows previously unattainable feeds per tooth and can also cope with rough applications. Thanks to the better cooling, higher cutting speeds can also be used - which significantly increases productivity.

- Standard tools in Ø80, Ø100, Ø125 and Ø160 mm
- Cutting widths 2 mm and 3 mm
- Strong cutting edges for highest productivity
- Precisley directed internal coolant supply
- Designed with flat front and free of interfering contours

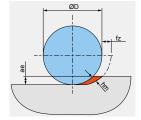

SLOTTING CUTTERS SSC

SPARE PARTS		
	ESG 1	
		1 = ejector

ADAPTION FOR SSC SLOTTING CUTTER

Designation	D	d	dw	LT	L	(K)	kg
FBD22CP22SA040-TB	40	22	22	41,8	40	/	0,32
FBD27CP27SA045-TB	45	27	27	46,8	45	✓	0,46
FBD32CP32SA060-TB	55	32	32	61,8	60	1	0,96

Recommended Cutting Data



Recommended Cutting Data:

		Cutting speed Vc [m/min]				
ISO	Material	1st choice dry machining resp. wear resistant carbide	1st choice wet machining resp. tough carbide			
	unalloyed steel	250 - 290	200 - 240			
Р	alloyed steel 800 N/mm ²	210 - 250	160 - 200			
	alloyed steel 1100 N/mm ²	160 - 180	110 - 130			
M	stainless steel	120 - 180	80 - 130			
K	gray cast iron	180 - 250	150 - 200			
K	nodular cast iron	140 - 210	110 - 160			
N	aluminum	800 - 1500	500 - 800			
	high temperature alloys	110 - 125	60 - 80			
	titanium alloys	40 - 50	30 - 40			
	hard machining < 54 HRC	30 - 40	-			
	hard machining < 63 HRC	-	-			

Tips:

- The worse the material machinability, the smaller the tool engagement should be chosen.
- The smaller the cutting tool diameter, the higher the cutting speed can be.
- If tool engagement is less than 1/3 of cutting tool diameter, the feed per tooth should be calculated with the following formula:

$$fz = hm x \sqrt{\frac{D}{ae}}$$

5

Ingersoll Cutting Tools Marketing & Technology

Germany / Allemagne Ingersoll Werkzeuge GmbH

Kalteiche-Ring 21-25 35708 Haiger, Germany Phone: +49 2773 742-0 Email: info@ingersoll-imc.de Internet: www.ingersoll-imc.de

France Ingersoll France

22, rue Albert Einstein
F-77420 CHAMPS-sur-MARNE
Téléphone: +33 164684536
E-Mail: info@ingersoll-imc.fr
Site web: www.ingersoll-imc.fr

